![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rfovfvfvd | Structured version Visualization version GIF version |
Description: Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, relation 𝑅, and left element 𝑋. (Contributed by RP, 25-Apr-2021.) |
Ref | Expression |
---|---|
rfovd.rf | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) |
rfovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rfovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
rfovfvd.r | ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) |
rfovfvd.f | ⊢ 𝐹 = (𝐴𝑂𝐵) |
rfovfvfvd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
rfovfvfvd.g | ⊢ 𝐺 = (𝐹‘𝑅) |
Ref | Expression |
---|---|
rfovfvfvd | ⊢ (𝜑 → (𝐺‘𝑋) = {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rfovfvfvd.g | . . 3 ⊢ 𝐺 = (𝐹‘𝑅) | |
2 | rfovd.rf | . . . 4 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) | |
3 | rfovd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | rfovd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | rfovfvd.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) | |
6 | rfovfvd.f | . . . 4 ⊢ 𝐹 = (𝐴𝑂𝐵) | |
7 | 2, 3, 4, 5, 6 | rfovfvd 43964 | . . 3 ⊢ (𝜑 → (𝐹‘𝑅) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) |
8 | 1, 7 | eqtrid 2792 | . 2 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) |
9 | breq1 5169 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦)) | |
10 | 9 | rabbidv 3451 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦} = {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦}) |
11 | 10 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦} = {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦}) |
12 | rfovfvfvd.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
13 | rabexg 5355 | . . 3 ⊢ (𝐵 ∈ 𝑊 → {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦} ∈ V) | |
14 | 4, 13 | syl 17 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦} ∈ V) |
15 | 8, 11, 12, 14 | fvmptd 7036 | 1 ⊢ (𝜑 → (𝐺‘𝑋) = {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 𝒫 cpw 4622 class class class wbr 5166 ↦ cmpt 5249 × cxp 5698 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |