![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rfovfvfvd | Structured version Visualization version GIF version |
Description: Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, relation 𝑅, and left element 𝑋. (Contributed by RP, 25-Apr-2021.) |
Ref | Expression |
---|---|
rfovd.rf | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) |
rfovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rfovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
rfovfvd.r | ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) |
rfovfvd.f | ⊢ 𝐹 = (𝐴𝑂𝐵) |
rfovfvfvd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
rfovfvfvd.g | ⊢ 𝐺 = (𝐹‘𝑅) |
Ref | Expression |
---|---|
rfovfvfvd | ⊢ (𝜑 → (𝐺‘𝑋) = {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rfovfvfvd.g | . . 3 ⊢ 𝐺 = (𝐹‘𝑅) | |
2 | rfovd.rf | . . . 4 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) | |
3 | rfovd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | rfovd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | rfovfvd.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) | |
6 | rfovfvd.f | . . . 4 ⊢ 𝐹 = (𝐴𝑂𝐵) | |
7 | 2, 3, 4, 5, 6 | rfovfvd 43329 | . . 3 ⊢ (𝜑 → (𝐹‘𝑅) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) |
8 | 1, 7 | eqtrid 2778 | . 2 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) |
9 | breq1 5144 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦)) | |
10 | 9 | rabbidv 3434 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦} = {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦}) |
11 | 10 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦} = {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦}) |
12 | rfovfvfvd.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
13 | rabexg 5324 | . . 3 ⊢ (𝐵 ∈ 𝑊 → {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦} ∈ V) | |
14 | 4, 13 | syl 17 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦} ∈ V) |
15 | 8, 11, 12, 14 | fvmptd 6999 | 1 ⊢ (𝜑 → (𝐺‘𝑋) = {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3426 Vcvv 3468 𝒫 cpw 4597 class class class wbr 5141 ↦ cmpt 5224 × cxp 5667 ‘cfv 6537 (class class class)co 7405 ∈ cmpo 7407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |