Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfovfvfvd Structured version   Visualization version   GIF version

Theorem rfovfvfvd 43986
Description: Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, relation 𝑅, and left element 𝑋. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
rfovd.rf 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
rfovd.a (𝜑𝐴𝑉)
rfovd.b (𝜑𝐵𝑊)
rfovfvd.r (𝜑𝑅 ∈ 𝒫 (𝐴 × 𝐵))
rfovfvd.f 𝐹 = (𝐴𝑂𝐵)
rfovfvfvd.x (𝜑𝑋𝐴)
rfovfvfvd.g 𝐺 = (𝐹𝑅)
Assertion
Ref Expression
rfovfvfvd (𝜑 → (𝐺𝑋) = {𝑦𝐵𝑋𝑅𝑦})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑟,𝑥   𝐵,𝑎,𝑏,𝑟,𝑥,𝑦   𝑅,𝑟,𝑥,𝑦   𝑥,𝑋,𝑦   𝜑,𝑎,𝑏,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝑅(𝑎,𝑏)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑏)   𝐺(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑋(𝑟,𝑎,𝑏)

Proof of Theorem rfovfvfvd
StepHypRef Expression
1 rfovfvfvd.g . . 3 𝐺 = (𝐹𝑅)
2 rfovd.rf . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
3 rfovd.a . . . 4 (𝜑𝐴𝑉)
4 rfovd.b . . . 4 (𝜑𝐵𝑊)
5 rfovfvd.r . . . 4 (𝜑𝑅 ∈ 𝒫 (𝐴 × 𝐵))
6 rfovfvd.f . . . 4 𝐹 = (𝐴𝑂𝐵)
72, 3, 4, 5, 6rfovfvd 43985 . . 3 (𝜑 → (𝐹𝑅) = (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑅𝑦}))
81, 7eqtrid 2776 . 2 (𝜑𝐺 = (𝑥𝐴 ↦ {𝑦𝐵𝑥𝑅𝑦}))
9 breq1 5095 . . . 4 (𝑥 = 𝑋 → (𝑥𝑅𝑦𝑋𝑅𝑦))
109rabbidv 3402 . . 3 (𝑥 = 𝑋 → {𝑦𝐵𝑥𝑅𝑦} = {𝑦𝐵𝑋𝑅𝑦})
1110adantl 481 . 2 ((𝜑𝑥 = 𝑋) → {𝑦𝐵𝑥𝑅𝑦} = {𝑦𝐵𝑋𝑅𝑦})
12 rfovfvfvd.x . 2 (𝜑𝑋𝐴)
13 rabexg 5276 . . 3 (𝐵𝑊 → {𝑦𝐵𝑋𝑅𝑦} ∈ V)
144, 13syl 17 . 2 (𝜑 → {𝑦𝐵𝑋𝑅𝑦} ∈ V)
158, 11, 12, 14fvmptd 6937 1 (𝜑 → (𝐺𝑋) = {𝑦𝐵𝑋𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436  𝒫 cpw 4551   class class class wbr 5092  cmpt 5173   × cxp 5617  cfv 6482  (class class class)co 7349  cmpo 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator