| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rfovfvfvd | Structured version Visualization version GIF version | ||
| Description: Value of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, relation 𝑅, and left element 𝑋. (Contributed by RP, 25-Apr-2021.) |
| Ref | Expression |
|---|---|
| rfovd.rf | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) |
| rfovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| rfovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| rfovfvd.r | ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) |
| rfovfvd.f | ⊢ 𝐹 = (𝐴𝑂𝐵) |
| rfovfvfvd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| rfovfvfvd.g | ⊢ 𝐺 = (𝐹‘𝑅) |
| Ref | Expression |
|---|---|
| rfovfvfvd | ⊢ (𝜑 → (𝐺‘𝑋) = {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rfovfvfvd.g | . . 3 ⊢ 𝐺 = (𝐹‘𝑅) | |
| 2 | rfovd.rf | . . . 4 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) | |
| 3 | rfovd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | rfovd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | rfovfvd.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝒫 (𝐴 × 𝐵)) | |
| 6 | rfovfvd.f | . . . 4 ⊢ 𝐹 = (𝐴𝑂𝐵) | |
| 7 | 2, 3, 4, 5, 6 | rfovfvd 44094 | . . 3 ⊢ (𝜑 → (𝐹‘𝑅) = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) |
| 8 | 1, 7 | eqtrid 2778 | . 2 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐴 ↦ {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦})) |
| 9 | breq1 5092 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦)) | |
| 10 | 9 | rabbidv 3402 | . . 3 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦} = {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦}) |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → {𝑦 ∈ 𝐵 ∣ 𝑥𝑅𝑦} = {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦}) |
| 12 | rfovfvfvd.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 13 | rabexg 5273 | . . 3 ⊢ (𝐵 ∈ 𝑊 → {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦} ∈ V) | |
| 14 | 4, 13 | syl 17 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦} ∈ V) |
| 15 | 8, 11, 12, 14 | fvmptd 6936 | 1 ⊢ (𝜑 → (𝐺‘𝑋) = {𝑦 ∈ 𝐵 ∣ 𝑋𝑅𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 𝒫 cpw 4547 class class class wbr 5089 ↦ cmpt 5170 × cxp 5612 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |