![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimcn1b | Structured version Visualization version GIF version |
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 10-May-2016.) |
Ref | Expression |
---|---|
rlimcn1b.1 | β’ ((π β§ π β π΄) β π΅ β π) |
rlimcn1b.2 | β’ (π β πΆ β π) |
rlimcn1b.3 | β’ (π β (π β π΄ β¦ π΅) βπ πΆ) |
rlimcn1b.4 | β’ (π β πΉ:πβΆβ) |
rlimcn1b.5 | β’ ((π β§ π₯ β β+) β βπ¦ β β+ βπ§ β π ((absβ(π§ β πΆ)) < π¦ β (absβ((πΉβπ§) β (πΉβπΆ))) < π₯)) |
Ref | Expression |
---|---|
rlimcn1b | β’ (π β (π β π΄ β¦ (πΉβπ΅)) βπ (πΉβπΆ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcn1b.4 | . . 3 β’ (π β πΉ:πβΆβ) | |
2 | rlimcn1b.1 | . . 3 β’ ((π β§ π β π΄) β π΅ β π) | |
3 | 1, 2 | cofmpt 7130 | . 2 β’ (π β (πΉ β (π β π΄ β¦ π΅)) = (π β π΄ β¦ (πΉβπ΅))) |
4 | 2 | fmpttd 7115 | . . 3 β’ (π β (π β π΄ β¦ π΅):π΄βΆπ) |
5 | rlimcn1b.2 | . . 3 β’ (π β πΆ β π) | |
6 | rlimcn1b.3 | . . 3 β’ (π β (π β π΄ β¦ π΅) βπ πΆ) | |
7 | rlimcn1b.5 | . . 3 β’ ((π β§ π₯ β β+) β βπ¦ β β+ βπ§ β π ((absβ(π§ β πΆ)) < π¦ β (absβ((πΉβπ§) β (πΉβπΆ))) < π₯)) | |
8 | 4, 5, 6, 1, 7 | rlimcn1 15532 | . 2 β’ (π β (πΉ β (π β π΄ β¦ π΅)) βπ (πΉβπΆ)) |
9 | 3, 8 | eqbrtrrd 5173 | 1 β’ (π β (π β π΄ β¦ (πΉβπ΅)) βπ (πΉβπΆ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β wcel 2107 βwral 3062 βwrex 3071 class class class wbr 5149 β¦ cmpt 5232 β ccom 5681 βΆwf 6540 βcfv 6544 (class class class)co 7409 βcc 11108 < clt 11248 β cmin 11444 β+crp 12974 abscabs 15181 βπ crli 15429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-pm 8823 df-rlim 15433 |
This theorem is referenced by: rlimabs 15553 rlimcj 15554 rlimre 15555 rlimim 15556 |
Copyright terms: Public domain | W3C validator |