| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimcn1b | Structured version Visualization version GIF version | ||
| Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 10-May-2016.) |
| Ref | Expression |
|---|---|
| rlimcn1b.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑋) |
| rlimcn1b.2 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| rlimcn1b.3 | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
| rlimcn1b.4 | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| rlimcn1b.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝐶)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐶))) < 𝑥)) |
| Ref | Expression |
|---|---|
| rlimcn1b | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ⇝𝑟 (𝐹‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimcn1b.4 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
| 2 | rlimcn1b.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑋) | |
| 3 | 1, 2 | cofmpt 7104 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
| 4 | 2 | fmpttd 7087 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑋) |
| 5 | rlimcn1b.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 6 | rlimcn1b.3 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
| 7 | rlimcn1b.5 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝐶)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐶))) < 𝑥)) | |
| 8 | 4, 5, 6, 1, 7 | rlimcn1 15554 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)) ⇝𝑟 (𝐹‘𝐶)) |
| 9 | 3, 8 | eqbrtrrd 5131 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ⇝𝑟 (𝐹‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 ↦ cmpt 5188 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 < clt 11208 − cmin 11405 ℝ+crp 12951 abscabs 15200 ⇝𝑟 crli 15451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-pm 8802 df-rlim 15455 |
| This theorem is referenced by: rlimabs 15575 rlimcj 15576 rlimre 15577 rlimim 15578 |
| Copyright terms: Public domain | W3C validator |