MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn1b Structured version   Visualization version   GIF version

Theorem rlimcn1b 15514
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimcn1b.1 ((𝜑𝑘𝐴) → 𝐵𝑋)
rlimcn1b.2 (𝜑𝐶𝑋)
rlimcn1b.3 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
rlimcn1b.4 (𝜑𝐹:𝑋⟶ℂ)
rlimcn1b.5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
Assertion
Ref Expression
rlimcn1b (𝜑 → (𝑘𝐴 ↦ (𝐹𝐵)) ⇝𝑟 (𝐹𝐶))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑘,𝐹,𝑥,𝑦,𝑧   𝑘,𝑋,𝑧   𝜑,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑘)   𝐶(𝑘)   𝑋(𝑥,𝑦)

Proof of Theorem rlimcn1b
StepHypRef Expression
1 rlimcn1b.4 . . 3 (𝜑𝐹:𝑋⟶ℂ)
2 rlimcn1b.1 . . 3 ((𝜑𝑘𝐴) → 𝐵𝑋)
31, 2cofmpt 7070 . 2 (𝜑 → (𝐹 ∘ (𝑘𝐴𝐵)) = (𝑘𝐴 ↦ (𝐹𝐵)))
42fmpttd 7053 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴𝑋)
5 rlimcn1b.2 . . 3 (𝜑𝐶𝑋)
6 rlimcn1b.3 . . 3 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
7 rlimcn1b.5 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
84, 5, 6, 1, 7rlimcn1 15513 . 2 (𝜑 → (𝐹 ∘ (𝑘𝐴𝐵)) ⇝𝑟 (𝐹𝐶))
93, 8eqbrtrrd 5119 1 (𝜑 → (𝑘𝐴 ↦ (𝐹𝐵)) ⇝𝑟 (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  wrex 3053   class class class wbr 5095  cmpt 5176  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  cc 11026   < clt 11168  cmin 11365  +crp 12911  abscabs 15159  𝑟 crli 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-pm 8763  df-rlim 15414
This theorem is referenced by:  rlimabs  15534  rlimcj  15535  rlimre  15536  rlimim  15537
  Copyright terms: Public domain W3C validator