Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimcn1b | Structured version Visualization version GIF version |
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 10-May-2016.) |
Ref | Expression |
---|---|
rlimcn1b.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑋) |
rlimcn1b.2 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
rlimcn1b.3 | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
rlimcn1b.4 | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
rlimcn1b.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝐶)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐶))) < 𝑥)) |
Ref | Expression |
---|---|
rlimcn1b | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ⇝𝑟 (𝐹‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcn1b.4 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
2 | rlimcn1b.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑋) | |
3 | 1, 2 | cofmpt 6998 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
4 | 2 | fmpttd 6983 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑋) |
5 | rlimcn1b.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
6 | rlimcn1b.3 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
7 | rlimcn1b.5 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝐶)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐶))) < 𝑥)) | |
8 | 4, 5, 6, 1, 7 | rlimcn1 15278 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)) ⇝𝑟 (𝐹‘𝐶)) |
9 | 3, 8 | eqbrtrrd 5102 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ⇝𝑟 (𝐹‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 class class class wbr 5078 ↦ cmpt 5161 ∘ ccom 5592 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 < clt 10993 − cmin 11188 ℝ+crp 12712 abscabs 14926 ⇝𝑟 crli 15175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-pm 8592 df-rlim 15179 |
This theorem is referenced by: rlimabs 15299 rlimcj 15300 rlimre 15301 rlimim 15302 |
Copyright terms: Public domain | W3C validator |