MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn1b Structured version   Visualization version   GIF version

Theorem rlimcn1b 15562
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimcn1b.1 ((𝜑𝑘𝐴) → 𝐵𝑋)
rlimcn1b.2 (𝜑𝐶𝑋)
rlimcn1b.3 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
rlimcn1b.4 (𝜑𝐹:𝑋⟶ℂ)
rlimcn1b.5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
Assertion
Ref Expression
rlimcn1b (𝜑 → (𝑘𝐴 ↦ (𝐹𝐵)) ⇝𝑟 (𝐹𝐶))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑘,𝐹,𝑥,𝑦,𝑧   𝑘,𝑋,𝑧   𝜑,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑘)   𝐶(𝑘)   𝑋(𝑥,𝑦)

Proof of Theorem rlimcn1b
StepHypRef Expression
1 rlimcn1b.4 . . 3 (𝜑𝐹:𝑋⟶ℂ)
2 rlimcn1b.1 . . 3 ((𝜑𝑘𝐴) → 𝐵𝑋)
31, 2cofmpt 7107 . 2 (𝜑 → (𝐹 ∘ (𝑘𝐴𝐵)) = (𝑘𝐴 ↦ (𝐹𝐵)))
42fmpttd 7090 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴𝑋)
5 rlimcn1b.2 . . 3 (𝜑𝐶𝑋)
6 rlimcn1b.3 . . 3 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
7 rlimcn1b.5 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
84, 5, 6, 1, 7rlimcn1 15561 . 2 (𝜑 → (𝐹 ∘ (𝑘𝐴𝐵)) ⇝𝑟 (𝐹𝐶))
93, 8eqbrtrrd 5134 1 (𝜑 → (𝑘𝐴 ↦ (𝐹𝐵)) ⇝𝑟 (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3045  wrex 3054   class class class wbr 5110  cmpt 5191  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cc 11073   < clt 11215  cmin 11412  +crp 12958  abscabs 15207  𝑟 crli 15458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-pm 8805  df-rlim 15462
This theorem is referenced by:  rlimabs  15582  rlimcj  15583  rlimre  15584  rlimim  15585
  Copyright terms: Public domain W3C validator