Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimcn1b | Structured version Visualization version GIF version |
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 10-May-2016.) |
Ref | Expression |
---|---|
rlimcn1b.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑋) |
rlimcn1b.2 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
rlimcn1b.3 | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
rlimcn1b.4 | ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
rlimcn1b.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝐶)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐶))) < 𝑥)) |
Ref | Expression |
---|---|
rlimcn1b | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ⇝𝑟 (𝐹‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcn1b.4 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | |
2 | rlimcn1b.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑋) | |
3 | 1, 2 | cofmpt 7001 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵))) |
4 | 2 | fmpttd 6986 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑋) |
5 | rlimcn1b.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
6 | rlimcn1b.3 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
7 | rlimcn1b.5 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝐶)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐶))) < 𝑥)) | |
8 | 4, 5, 6, 1, 7 | rlimcn1 15295 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)) ⇝𝑟 (𝐹‘𝐶)) |
9 | 3, 8 | eqbrtrrd 5103 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝐵)) ⇝𝑟 (𝐹‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 ∀wral 3066 ∃wrex 3067 class class class wbr 5079 ↦ cmpt 5162 ∘ ccom 5594 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 < clt 11010 − cmin 11205 ℝ+crp 12729 abscabs 14943 ⇝𝑟 crli 15192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-pm 8601 df-rlim 15196 |
This theorem is referenced by: rlimabs 15316 rlimcj 15317 rlimre 15318 rlimim 15319 |
Copyright terms: Public domain | W3C validator |