MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcn1b Structured version   Visualization version   GIF version

Theorem rlimcn1b 15279
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimcn1b.1 ((𝜑𝑘𝐴) → 𝐵𝑋)
rlimcn1b.2 (𝜑𝐶𝑋)
rlimcn1b.3 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
rlimcn1b.4 (𝜑𝐹:𝑋⟶ℂ)
rlimcn1b.5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
Assertion
Ref Expression
rlimcn1b (𝜑 → (𝑘𝐴 ↦ (𝐹𝐵)) ⇝𝑟 (𝐹𝐶))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑘,𝐹,𝑥,𝑦,𝑧   𝑘,𝑋,𝑧   𝜑,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑘)   𝐶(𝑘)   𝑋(𝑥,𝑦)

Proof of Theorem rlimcn1b
StepHypRef Expression
1 rlimcn1b.4 . . 3 (𝜑𝐹:𝑋⟶ℂ)
2 rlimcn1b.1 . . 3 ((𝜑𝑘𝐴) → 𝐵𝑋)
31, 2cofmpt 6998 . 2 (𝜑 → (𝐹 ∘ (𝑘𝐴𝐵)) = (𝑘𝐴 ↦ (𝐹𝐵)))
42fmpttd 6983 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴𝑋)
5 rlimcn1b.2 . . 3 (𝜑𝐶𝑋)
6 rlimcn1b.3 . . 3 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
7 rlimcn1b.5 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝑋 ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐶))) < 𝑥))
84, 5, 6, 1, 7rlimcn1 15278 . 2 (𝜑 → (𝐹 ∘ (𝑘𝐴𝐵)) ⇝𝑟 (𝐹𝐶))
93, 8eqbrtrrd 5102 1 (𝜑 → (𝑘𝐴 ↦ (𝐹𝐵)) ⇝𝑟 (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3065  wrex 3066   class class class wbr 5078  cmpt 5161  ccom 5592  wf 6426  cfv 6430  (class class class)co 7268  cc 10853   < clt 10993  cmin 11188  +crp 12712  abscabs 14926  𝑟 crli 15175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-pm 8592  df-rlim 15179
This theorem is referenced by:  rlimabs  15299  rlimcj  15300  rlimre  15301  rlimim  15302
  Copyright terms: Public domain W3C validator