Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimcj | Structured version Visualization version GIF version |
Description: Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by Mario Carneiro, 10-May-2016.) |
Ref | Expression |
---|---|
rlimabs.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
rlimabs.2 | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
Ref | Expression |
---|---|
rlimcj | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (∗‘𝐵)) ⇝𝑟 (∗‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimabs.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
2 | rlimabs.2 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
3 | 1, 2 | rlimmptrcl 15396 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
4 | rlimcl 15291 | . . 3 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ) | |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
6 | cjf 14894 | . . 3 ⊢ ∗:ℂ⟶ℂ | |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → ∗:ℂ⟶ℂ) |
8 | cjcn2 15388 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐶)) < 𝑦 → (abs‘((∗‘𝑧) − (∗‘𝐶))) < 𝑥)) | |
9 | 5, 8 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐶)) < 𝑦 → (abs‘((∗‘𝑧) − (∗‘𝐶))) < 𝑥)) |
10 | 3, 5, 2, 7, 9 | rlimcn1b 15377 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (∗‘𝐵)) ⇝𝑟 (∗‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ∀wral 3062 ∃wrex 3071 class class class wbr 5087 ↦ cmpt 5170 ⟶wf 6462 ‘cfv 6466 (class class class)co 7317 ℂcc 10949 < clt 11089 − cmin 11285 ℝ+crp 12810 ∗ccj 14886 abscabs 15024 ⇝𝑟 crli 15273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-pm 8668 df-en 8784 df-dom 8785 df-sdom 8786 df-sup 9278 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-2 12116 df-3 12117 df-n0 12314 df-z 12400 df-uz 12663 df-rp 12811 df-seq 13802 df-exp 13863 df-cj 14889 df-re 14890 df-im 14891 df-sqrt 15025 df-abs 15026 df-rlim 15277 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |