![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimabs | Structured version Visualization version GIF version |
Description: Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by Mario Carneiro, 10-May-2016.) |
Ref | Expression |
---|---|
rlimabs.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
rlimabs.2 | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
Ref | Expression |
---|---|
rlimabs | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (abs‘𝐵)) ⇝𝑟 (abs‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimabs.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
2 | rlimabs.2 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
3 | 1, 2 | rlimmptrcl 14716 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
4 | rlimcl 14612 | . . 3 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ) | |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
6 | absf 14455 | . . . 4 ⊢ abs:ℂ⟶ℝ | |
7 | ax-resscn 10310 | . . . 4 ⊢ ℝ ⊆ ℂ | |
8 | fss 6292 | . . . 4 ⊢ ((abs:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → abs:ℂ⟶ℂ) | |
9 | 6, 7, 8 | mp2an 685 | . . 3 ⊢ abs:ℂ⟶ℂ |
10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → abs:ℂ⟶ℂ) |
11 | abscn2 14707 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐶)) < 𝑦 → (abs‘((abs‘𝑧) − (abs‘𝐶))) < 𝑥)) | |
12 | 5, 11 | sylan 577 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐶)) < 𝑦 → (abs‘((abs‘𝑧) − (abs‘𝐶))) < 𝑥)) |
13 | 3, 5, 2, 10, 12 | rlimcn1b 14698 | 1 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (abs‘𝐵)) ⇝𝑟 (abs‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2166 ∀wral 3118 ∃wrex 3119 ⊆ wss 3799 class class class wbr 4874 ↦ cmpt 4953 ⟶wf 6120 ‘cfv 6124 (class class class)co 6906 ℂcc 10251 ℝcr 10252 < clt 10392 − cmin 10586 ℝ+crp 12113 abscabs 14352 ⇝𝑟 crli 14594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-pre-sup 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-er 8010 df-pm 8126 df-en 8224 df-dom 8225 df-sdom 8226 df-sup 8618 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-nn 11352 df-2 11415 df-3 11416 df-n0 11620 df-z 11706 df-uz 11970 df-rp 12114 df-seq 13097 df-exp 13156 df-cj 14217 df-re 14218 df-im 14219 df-sqrt 14353 df-abs 14354 df-rlim 14598 |
This theorem is referenced by: dvfsumrlim2 24195 |
Copyright terms: Public domain | W3C validator |