MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimabs Structured version   Visualization version   GIF version

Theorem rlimabs 15513
Description: Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimabs.1 ((𝜑𝑘𝐴) → 𝐵𝑉)
rlimabs.2 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
Assertion
Ref Expression
rlimabs (𝜑 → (𝑘𝐴 ↦ (abs‘𝐵)) ⇝𝑟 (abs‘𝐶))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem rlimabs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimabs.1 . . 3 ((𝜑𝑘𝐴) → 𝐵𝑉)
2 rlimabs.2 . . 3 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
31, 2rlimmptrcl 15512 . 2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4 rlimcl 15407 . . 3 ((𝑘𝐴𝐵) ⇝𝑟 𝐶𝐶 ∈ ℂ)
52, 4syl 17 . 2 (𝜑𝐶 ∈ ℂ)
6 absf 15242 . . . 4 abs:ℂ⟶ℝ
7 ax-resscn 11060 . . . 4 ℝ ⊆ ℂ
8 fss 6667 . . . 4 ((abs:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → abs:ℂ⟶ℂ)
96, 7, 8mp2an 692 . . 3 abs:ℂ⟶ℂ
109a1i 11 . 2 (𝜑 → abs:ℂ⟶ℂ)
11 abscn2 15503 . . 3 ((𝐶 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((abs‘𝑧) − (abs‘𝐶))) < 𝑥))
125, 11sylan 580 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐶)) < 𝑦 → (abs‘((abs‘𝑧) − (abs‘𝐶))) < 𝑥))
133, 5, 2, 10, 12rlimcn1b 15493 1 (𝜑 → (𝑘𝐴 ↦ (abs‘𝐵)) ⇝𝑟 (abs‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  wrex 3056  wss 3902   class class class wbr 5091  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  cc 11001  cr 11002   < clt 11143  cmin 11341  +crp 12887  abscabs 15138  𝑟 crli 15389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-rlim 15393
This theorem is referenced by:  dvfsumrlim2  25964
  Copyright terms: Public domain W3C validator