MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimo1 Structured version   Visualization version   GIF version

Theorem rlimo1 15638
Description: Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
rlimo1 (𝐹𝑟 𝐴𝐹 ∈ 𝑂(1))

Proof of Theorem rlimo1
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimf 15522 . . . . . 6 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
21ffvelcdmda 7079 . . . . 5 ((𝐹𝑟 𝐴𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
32ralrimiva 3133 . . . 4 (𝐹𝑟 𝐴 → ∀𝑧 ∈ dom 𝐹(𝐹𝑧) ∈ ℂ)
4 1rp 13017 . . . . 5 1 ∈ ℝ+
54a1i 11 . . . 4 (𝐹𝑟 𝐴 → 1 ∈ ℝ+)
61feqmptd 6952 . . . . 5 (𝐹𝑟 𝐴𝐹 = (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)))
7 id 22 . . . . 5 (𝐹𝑟 𝐴𝐹𝑟 𝐴)
86, 7eqbrtrrd 5148 . . . 4 (𝐹𝑟 𝐴 → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ⇝𝑟 𝐴)
93, 5, 8rlimi 15534 . . 3 (𝐹𝑟 𝐴 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1))
10 rlimcl 15524 . . . . . . . 8 (𝐹𝑟 𝐴𝐴 ∈ ℂ)
1110adantr 480 . . . . . . 7 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
1211abscld 15460 . . . . . 6 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (abs‘𝐴) ∈ ℝ)
13 peano2re 11413 . . . . . 6 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
1412, 13syl 17 . . . . 5 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → ((abs‘𝐴) + 1) ∈ ℝ)
152adantlr 715 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
1611adantr 480 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → 𝐴 ∈ ℂ)
1715, 16abs2difd 15481 . . . . . . . . . 10 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)))
1815abscld 15460 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ∈ ℝ)
1912adantr 480 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘𝐴) ∈ ℝ)
2018, 19resubcld 11670 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) ∈ ℝ)
2115, 16subcld 11599 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((𝐹𝑧) − 𝐴) ∈ ℂ)
2221abscld 15460 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘((𝐹𝑧) − 𝐴)) ∈ ℝ)
23 1red 11241 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → 1 ∈ ℝ)
24 lelttr 11330 . . . . . . . . . . 11 ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ∈ ℝ ∧ (abs‘((𝐹𝑧) − 𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)) ∧ (abs‘((𝐹𝑧) − 𝐴)) < 1) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2520, 22, 23, 24syl3anc 1373 . . . . . . . . . 10 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)) ∧ (abs‘((𝐹𝑧) − 𝐴)) < 1) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2617, 25mpand 695 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2718, 19, 23ltsubadd2d 11840 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1 ↔ (abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1)))
2826, 27sylibd 239 . . . . . . . 8 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → (abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1)))
2914adantr 480 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘𝐴) + 1) ∈ ℝ)
30 ltle 11328 . . . . . . . . 9 (((abs‘(𝐹𝑧)) ∈ ℝ ∧ ((abs‘𝐴) + 1) ∈ ℝ) → ((abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1) → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3118, 29, 30syl2anc 584 . . . . . . . 8 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1) → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3228, 31syld 47 . . . . . . 7 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3332imim2d 57 . . . . . 6 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → (𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3433ralimdva 3153 . . . . 5 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
35 breq2 5128 . . . . . . . 8 (𝑤 = ((abs‘𝐴) + 1) → ((abs‘(𝐹𝑧)) ≤ 𝑤 ↔ (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3635imbi2d 340 . . . . . . 7 (𝑤 = ((abs‘𝐴) + 1) → ((𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤) ↔ (𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3736ralbidv 3164 . . . . . 6 (𝑤 = ((abs‘𝐴) + 1) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤) ↔ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3837rspcev 3606 . . . . 5 ((((abs‘𝐴) + 1) ∈ ℝ ∧ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤))
3914, 34, 38syl6an 684 . . . 4 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
4039reximdva 3154 . . 3 (𝐹𝑟 𝐴 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
419, 40mpd 15 . 2 (𝐹𝑟 𝐴 → ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤))
42 rlimss 15523 . . 3 (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)
43 elo12 15548 . . 3 ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
441, 42, 43syl2anc 584 . 2 (𝐹𝑟 𝐴 → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
4541, 44mpbird 257 1 (𝐹𝑟 𝐴𝐹 ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  wss 3931   class class class wbr 5124  cmpt 5206  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  1c1 11135   + caddc 11137   < clt 11274  cle 11275  cmin 11471  +crp 13013  abscabs 15258  𝑟 crli 15506  𝑂(1)co1 15507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ico 13373  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-rlim 15510  df-o1 15511
This theorem is referenced by:  rlimdmo1  15639  o1const  15641  chebbnd2  27445  chto1lb  27446  chpo1ub  27448  vmadivsum  27450  dchrvmasumlem2  27466  dchrisum0lem1  27484  dchrisum0lem2a  27485  mudivsum  27498  mulog2sumlem2  27503  vmalogdivsum2  27506  2vmadivsumlem  27508  selberglem2  27514  selberg2lem  27518  selberg4lem1  27528  pntrsumo1  27533  pntrlog2bndlem2  27546  pntrlog2bndlem4  27548  pntrlog2bndlem5  27549
  Copyright terms: Public domain W3C validator