MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimo1 Structured version   Visualization version   GIF version

Theorem rlimo1 15663
Description: Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
rlimo1 (𝐹𝑟 𝐴𝐹 ∈ 𝑂(1))

Proof of Theorem rlimo1
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimf 15547 . . . . . 6 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
21ffvelcdmda 7118 . . . . 5 ((𝐹𝑟 𝐴𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
32ralrimiva 3152 . . . 4 (𝐹𝑟 𝐴 → ∀𝑧 ∈ dom 𝐹(𝐹𝑧) ∈ ℂ)
4 1rp 13061 . . . . 5 1 ∈ ℝ+
54a1i 11 . . . 4 (𝐹𝑟 𝐴 → 1 ∈ ℝ+)
61feqmptd 6990 . . . . 5 (𝐹𝑟 𝐴𝐹 = (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)))
7 id 22 . . . . 5 (𝐹𝑟 𝐴𝐹𝑟 𝐴)
86, 7eqbrtrrd 5190 . . . 4 (𝐹𝑟 𝐴 → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ⇝𝑟 𝐴)
93, 5, 8rlimi 15559 . . 3 (𝐹𝑟 𝐴 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1))
10 rlimcl 15549 . . . . . . . 8 (𝐹𝑟 𝐴𝐴 ∈ ℂ)
1110adantr 480 . . . . . . 7 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
1211abscld 15485 . . . . . 6 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (abs‘𝐴) ∈ ℝ)
13 peano2re 11463 . . . . . 6 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
1412, 13syl 17 . . . . 5 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → ((abs‘𝐴) + 1) ∈ ℝ)
152adantlr 714 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
1611adantr 480 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → 𝐴 ∈ ℂ)
1715, 16abs2difd 15506 . . . . . . . . . 10 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)))
1815abscld 15485 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ∈ ℝ)
1912adantr 480 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘𝐴) ∈ ℝ)
2018, 19resubcld 11718 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) ∈ ℝ)
2115, 16subcld 11647 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((𝐹𝑧) − 𝐴) ∈ ℂ)
2221abscld 15485 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘((𝐹𝑧) − 𝐴)) ∈ ℝ)
23 1red 11291 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → 1 ∈ ℝ)
24 lelttr 11380 . . . . . . . . . . 11 ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ∈ ℝ ∧ (abs‘((𝐹𝑧) − 𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)) ∧ (abs‘((𝐹𝑧) − 𝐴)) < 1) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2520, 22, 23, 24syl3anc 1371 . . . . . . . . . 10 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)) ∧ (abs‘((𝐹𝑧) − 𝐴)) < 1) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2617, 25mpand 694 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2718, 19, 23ltsubadd2d 11888 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1 ↔ (abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1)))
2826, 27sylibd 239 . . . . . . . 8 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → (abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1)))
2914adantr 480 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘𝐴) + 1) ∈ ℝ)
30 ltle 11378 . . . . . . . . 9 (((abs‘(𝐹𝑧)) ∈ ℝ ∧ ((abs‘𝐴) + 1) ∈ ℝ) → ((abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1) → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3118, 29, 30syl2anc 583 . . . . . . . 8 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1) → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3228, 31syld 47 . . . . . . 7 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3332imim2d 57 . . . . . 6 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → (𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3433ralimdva 3173 . . . . 5 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
35 breq2 5170 . . . . . . . 8 (𝑤 = ((abs‘𝐴) + 1) → ((abs‘(𝐹𝑧)) ≤ 𝑤 ↔ (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3635imbi2d 340 . . . . . . 7 (𝑤 = ((abs‘𝐴) + 1) → ((𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤) ↔ (𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3736ralbidv 3184 . . . . . 6 (𝑤 = ((abs‘𝐴) + 1) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤) ↔ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3837rspcev 3635 . . . . 5 ((((abs‘𝐴) + 1) ∈ ℝ ∧ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤))
3914, 34, 38syl6an 683 . . . 4 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
4039reximdva 3174 . . 3 (𝐹𝑟 𝐴 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
419, 40mpd 15 . 2 (𝐹𝑟 𝐴 → ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤))
42 rlimss 15548 . . 3 (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)
43 elo12 15573 . . 3 ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
441, 42, 43syl2anc 583 . 2 (𝐹𝑟 𝐴 → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
4541, 44mpbird 257 1 (𝐹𝑟 𝐴𝐹 ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  +crp 13057  abscabs 15283  𝑟 crli 15531  𝑂(1)co1 15532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-rlim 15535  df-o1 15536
This theorem is referenced by:  rlimdmo1  15664  o1const  15666  chebbnd2  27539  chto1lb  27540  chpo1ub  27542  vmadivsum  27544  dchrvmasumlem2  27560  dchrisum0lem1  27578  dchrisum0lem2a  27579  mudivsum  27592  mulog2sumlem2  27597  vmalogdivsum2  27600  2vmadivsumlem  27602  selberglem2  27608  selberg2lem  27612  selberg4lem1  27622  pntrsumo1  27627  pntrlog2bndlem2  27640  pntrlog2bndlem4  27642  pntrlog2bndlem5  27643
  Copyright terms: Public domain W3C validator