| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rlimf 15538 | . . . . . 6
⊢ (𝐹 ⇝𝑟
𝐴 → 𝐹:dom 𝐹⟶ℂ) | 
| 2 | 1 | ffvelcdmda 7103 | . . . . 5
⊢ ((𝐹 ⇝𝑟
𝐴 ∧ 𝑧 ∈ dom 𝐹) → (𝐹‘𝑧) ∈ ℂ) | 
| 3 | 2 | ralrimiva 3145 | . . . 4
⊢ (𝐹 ⇝𝑟
𝐴 → ∀𝑧 ∈ dom 𝐹(𝐹‘𝑧) ∈ ℂ) | 
| 4 |  | 1rp 13039 | . . . . 5
⊢ 1 ∈
ℝ+ | 
| 5 | 4 | a1i 11 | . . . 4
⊢ (𝐹 ⇝𝑟
𝐴 → 1 ∈
ℝ+) | 
| 6 | 1 | feqmptd 6976 | . . . . 5
⊢ (𝐹 ⇝𝑟
𝐴 → 𝐹 = (𝑧 ∈ dom 𝐹 ↦ (𝐹‘𝑧))) | 
| 7 |  | id 22 | . . . . 5
⊢ (𝐹 ⇝𝑟
𝐴 → 𝐹 ⇝𝑟 𝐴) | 
| 8 | 6, 7 | eqbrtrrd 5166 | . . . 4
⊢ (𝐹 ⇝𝑟
𝐴 → (𝑧 ∈ dom 𝐹 ↦ (𝐹‘𝑧)) ⇝𝑟 𝐴) | 
| 9 | 3, 5, 8 | rlimi 15550 | . . 3
⊢ (𝐹 ⇝𝑟
𝐴 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 1)) | 
| 10 |  | rlimcl 15540 | . . . . . . . 8
⊢ (𝐹 ⇝𝑟
𝐴 → 𝐴 ∈ ℂ) | 
| 11 | 10 | adantr 480 | . . . . . . 7
⊢ ((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℂ) | 
| 12 | 11 | abscld 15476 | . . . . . 6
⊢ ((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) → (abs‘𝐴) ∈
ℝ) | 
| 13 |  | peano2re 11435 | . . . . . 6
⊢
((abs‘𝐴)
∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ) | 
| 14 | 12, 13 | syl 17 | . . . . 5
⊢ ((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) → ((abs‘𝐴) + 1) ∈
ℝ) | 
| 15 | 2 | adantlr 715 | . . . . . . . . . . 11
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (𝐹‘𝑧) ∈ ℂ) | 
| 16 | 11 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → 𝐴 ∈ ℂ) | 
| 17 | 15, 16 | abs2difd 15497 | . . . . . . . . . 10
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹‘𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹‘𝑧) − 𝐴))) | 
| 18 | 15 | abscld 15476 | . . . . . . . . . . . 12
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹‘𝑧)) ∈ ℝ) | 
| 19 | 12 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘𝐴) ∈ ℝ) | 
| 20 | 18, 19 | resubcld 11692 | . . . . . . . . . . 11
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹‘𝑧)) − (abs‘𝐴)) ∈ ℝ) | 
| 21 | 15, 16 | subcld 11621 | . . . . . . . . . . . 12
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((𝐹‘𝑧) − 𝐴) ∈ ℂ) | 
| 22 | 21 | abscld 15476 | . . . . . . . . . . 11
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘((𝐹‘𝑧) − 𝐴)) ∈ ℝ) | 
| 23 |  | 1red 11263 | . . . . . . . . . . 11
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → 1 ∈ ℝ) | 
| 24 |  | lelttr 11352 | . . . . . . . . . . 11
⊢
((((abs‘(𝐹‘𝑧)) − (abs‘𝐴)) ∈ ℝ ∧ (abs‘((𝐹‘𝑧) − 𝐴)) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((((abs‘(𝐹‘𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹‘𝑧) − 𝐴)) ∧ (abs‘((𝐹‘𝑧) − 𝐴)) < 1) → ((abs‘(𝐹‘𝑧)) − (abs‘𝐴)) < 1)) | 
| 25 | 20, 22, 23, 24 | syl3anc 1372 | . . . . . . . . . 10
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((((abs‘(𝐹‘𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹‘𝑧) − 𝐴)) ∧ (abs‘((𝐹‘𝑧) − 𝐴)) < 1) → ((abs‘(𝐹‘𝑧)) − (abs‘𝐴)) < 1)) | 
| 26 | 17, 25 | mpand 695 | . . . . . . . . 9
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹‘𝑧) − 𝐴)) < 1 → ((abs‘(𝐹‘𝑧)) − (abs‘𝐴)) < 1)) | 
| 27 | 18, 19, 23 | ltsubadd2d 11862 | . . . . . . . . 9
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (((abs‘(𝐹‘𝑧)) − (abs‘𝐴)) < 1 ↔ (abs‘(𝐹‘𝑧)) < ((abs‘𝐴) + 1))) | 
| 28 | 26, 27 | sylibd 239 | . . . . . . . 8
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹‘𝑧) − 𝐴)) < 1 → (abs‘(𝐹‘𝑧)) < ((abs‘𝐴) + 1))) | 
| 29 | 14 | adantr 480 | . . . . . . . . 9
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘𝐴) + 1) ∈ ℝ) | 
| 30 |  | ltle 11350 | . . . . . . . . 9
⊢
(((abs‘(𝐹‘𝑧)) ∈ ℝ ∧ ((abs‘𝐴) + 1) ∈ ℝ) →
((abs‘(𝐹‘𝑧)) < ((abs‘𝐴) + 1) → (abs‘(𝐹‘𝑧)) ≤ ((abs‘𝐴) + 1))) | 
| 31 | 18, 29, 30 | syl2anc 584 | . . . . . . . 8
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹‘𝑧)) < ((abs‘𝐴) + 1) → (abs‘(𝐹‘𝑧)) ≤ ((abs‘𝐴) + 1))) | 
| 32 | 28, 31 | syld 47 | . . . . . . 7
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹‘𝑧) − 𝐴)) < 1 → (abs‘(𝐹‘𝑧)) ≤ ((abs‘𝐴) + 1))) | 
| 33 | 32 | imim2d 57 | . . . . . 6
⊢ (((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 1) → (𝑦 ≤ 𝑧 → (abs‘(𝐹‘𝑧)) ≤ ((abs‘𝐴) + 1)))) | 
| 34 | 33 | ralimdva 3166 | . . . . 5
⊢ ((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) → (∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 1) → ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘(𝐹‘𝑧)) ≤ ((abs‘𝐴) + 1)))) | 
| 35 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑤 = ((abs‘𝐴) + 1) → ((abs‘(𝐹‘𝑧)) ≤ 𝑤 ↔ (abs‘(𝐹‘𝑧)) ≤ ((abs‘𝐴) + 1))) | 
| 36 | 35 | imbi2d 340 | . . . . . . 7
⊢ (𝑤 = ((abs‘𝐴) + 1) → ((𝑦 ≤ 𝑧 → (abs‘(𝐹‘𝑧)) ≤ 𝑤) ↔ (𝑦 ≤ 𝑧 → (abs‘(𝐹‘𝑧)) ≤ ((abs‘𝐴) + 1)))) | 
| 37 | 36 | ralbidv 3177 | . . . . . 6
⊢ (𝑤 = ((abs‘𝐴) + 1) → (∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘(𝐹‘𝑧)) ≤ 𝑤) ↔ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘(𝐹‘𝑧)) ≤ ((abs‘𝐴) + 1)))) | 
| 38 | 37 | rspcev 3621 | . . . . 5
⊢
((((abs‘𝐴) +
1) ∈ ℝ ∧ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘(𝐹‘𝑧)) ≤ ((abs‘𝐴) + 1))) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘(𝐹‘𝑧)) ≤ 𝑤)) | 
| 39 | 14, 34, 38 | syl6an 684 | . . . 4
⊢ ((𝐹 ⇝𝑟
𝐴 ∧ 𝑦 ∈ ℝ) → (∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 1) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘(𝐹‘𝑧)) ≤ 𝑤))) | 
| 40 | 39 | reximdva 3167 | . . 3
⊢ (𝐹 ⇝𝑟
𝐴 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 1) → ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘(𝐹‘𝑧)) ≤ 𝑤))) | 
| 41 | 9, 40 | mpd 15 | . 2
⊢ (𝐹 ⇝𝑟
𝐴 → ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘(𝐹‘𝑧)) ≤ 𝑤)) | 
| 42 |  | rlimss 15539 | . . 3
⊢ (𝐹 ⇝𝑟
𝐴 → dom 𝐹 ⊆
ℝ) | 
| 43 |  | elo12 15564 | . . 3
⊢ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘(𝐹‘𝑧)) ≤ 𝑤))) | 
| 44 | 1, 42, 43 | syl2anc 584 | . 2
⊢ (𝐹 ⇝𝑟
𝐴 → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘(𝐹‘𝑧)) ≤ 𝑤))) | 
| 45 | 41, 44 | mpbird 257 | 1
⊢ (𝐹 ⇝𝑟
𝐴 → 𝐹 ∈ 𝑂(1)) |