MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimo1 Structured version   Visualization version   GIF version

Theorem rlimo1 15426
Description: Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
rlimo1 (𝐹𝑟 𝐴𝐹 ∈ 𝑂(1))

Proof of Theorem rlimo1
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimf 15310 . . . . . 6 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
21ffvelcdmda 7022 . . . . 5 ((𝐹𝑟 𝐴𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
32ralrimiva 3140 . . . 4 (𝐹𝑟 𝐴 → ∀𝑧 ∈ dom 𝐹(𝐹𝑧) ∈ ℂ)
4 1rp 12840 . . . . 5 1 ∈ ℝ+
54a1i 11 . . . 4 (𝐹𝑟 𝐴 → 1 ∈ ℝ+)
61feqmptd 6898 . . . . 5 (𝐹𝑟 𝐴𝐹 = (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)))
7 id 22 . . . . 5 (𝐹𝑟 𝐴𝐹𝑟 𝐴)
86, 7eqbrtrrd 5121 . . . 4 (𝐹𝑟 𝐴 → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ⇝𝑟 𝐴)
93, 5, 8rlimi 15322 . . 3 (𝐹𝑟 𝐴 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1))
10 rlimcl 15312 . . . . . . . 8 (𝐹𝑟 𝐴𝐴 ∈ ℂ)
1110adantr 482 . . . . . . 7 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
1211abscld 15248 . . . . . 6 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (abs‘𝐴) ∈ ℝ)
13 peano2re 11254 . . . . . 6 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
1412, 13syl 17 . . . . 5 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → ((abs‘𝐴) + 1) ∈ ℝ)
152adantlr 713 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
1611adantr 482 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → 𝐴 ∈ ℂ)
1715, 16abs2difd 15269 . . . . . . . . . 10 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)))
1815abscld 15248 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ∈ ℝ)
1912adantr 482 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘𝐴) ∈ ℝ)
2018, 19resubcld 11509 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) ∈ ℝ)
2115, 16subcld 11438 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((𝐹𝑧) − 𝐴) ∈ ℂ)
2221abscld 15248 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘((𝐹𝑧) − 𝐴)) ∈ ℝ)
23 1red 11082 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → 1 ∈ ℝ)
24 lelttr 11171 . . . . . . . . . . 11 ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ∈ ℝ ∧ (abs‘((𝐹𝑧) − 𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)) ∧ (abs‘((𝐹𝑧) − 𝐴)) < 1) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2520, 22, 23, 24syl3anc 1371 . . . . . . . . . 10 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)) ∧ (abs‘((𝐹𝑧) − 𝐴)) < 1) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2617, 25mpand 693 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2718, 19, 23ltsubadd2d 11679 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1 ↔ (abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1)))
2826, 27sylibd 238 . . . . . . . 8 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → (abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1)))
2914adantr 482 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘𝐴) + 1) ∈ ℝ)
30 ltle 11169 . . . . . . . . 9 (((abs‘(𝐹𝑧)) ∈ ℝ ∧ ((abs‘𝐴) + 1) ∈ ℝ) → ((abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1) → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3118, 29, 30syl2anc 585 . . . . . . . 8 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1) → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3228, 31syld 47 . . . . . . 7 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3332imim2d 57 . . . . . 6 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → (𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3433ralimdva 3161 . . . . 5 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
35 breq2 5101 . . . . . . . 8 (𝑤 = ((abs‘𝐴) + 1) → ((abs‘(𝐹𝑧)) ≤ 𝑤 ↔ (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3635imbi2d 341 . . . . . . 7 (𝑤 = ((abs‘𝐴) + 1) → ((𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤) ↔ (𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3736ralbidv 3171 . . . . . 6 (𝑤 = ((abs‘𝐴) + 1) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤) ↔ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3837rspcev 3574 . . . . 5 ((((abs‘𝐴) + 1) ∈ ℝ ∧ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤))
3914, 34, 38syl6an 682 . . . 4 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
4039reximdva 3162 . . 3 (𝐹𝑟 𝐴 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
419, 40mpd 15 . 2 (𝐹𝑟 𝐴 → ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤))
42 rlimss 15311 . . 3 (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)
43 elo12 15336 . . 3 ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
441, 42, 43syl2anc 585 . 2 (𝐹𝑟 𝐴 → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
4541, 44mpbird 257 1 (𝐹𝑟 𝐴𝐹 ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wral 3062  wrex 3071  wss 3902   class class class wbr 5097  cmpt 5180  dom cdm 5625  wf 6480  cfv 6484  (class class class)co 7342  cc 10975  cr 10976  1c1 10978   + caddc 10980   < clt 11115  cle 11116  cmin 11311  +crp 12836  abscabs 15045  𝑟 crli 15294  𝑂(1)co1 15295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-er 8574  df-pm 8694  df-en 8810  df-dom 8811  df-sdom 8812  df-sup 9304  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-n0 12340  df-z 12426  df-uz 12689  df-rp 12837  df-ico 13191  df-seq 13828  df-exp 13889  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-rlim 15298  df-o1 15299
This theorem is referenced by:  rlimdmo1  15427  o1const  15429  chebbnd2  26731  chto1lb  26732  chpo1ub  26734  vmadivsum  26736  dchrvmasumlem2  26752  dchrisum0lem1  26770  dchrisum0lem2a  26771  mudivsum  26784  mulog2sumlem2  26789  vmalogdivsum2  26792  2vmadivsumlem  26794  selberglem2  26800  selberg2lem  26804  selberg4lem1  26814  pntrsumo1  26819  pntrlog2bndlem2  26832  pntrlog2bndlem4  26834  pntrlog2bndlem5  26835
  Copyright terms: Public domain W3C validator