MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimo1 Structured version   Visualization version   GIF version

Theorem rlimo1 14646
Description: Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
rlimo1 (𝐹𝑟 𝐴𝐹 ∈ 𝑂(1))

Proof of Theorem rlimo1
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimf 14531 . . . . . 6 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
21ffvelrnda 6553 . . . . 5 ((𝐹𝑟 𝐴𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
32ralrimiva 3113 . . . 4 (𝐹𝑟 𝐴 → ∀𝑧 ∈ dom 𝐹(𝐹𝑧) ∈ ℂ)
4 1rp 12037 . . . . 5 1 ∈ ℝ+
54a1i 11 . . . 4 (𝐹𝑟 𝐴 → 1 ∈ ℝ+)
61feqmptd 6442 . . . . 5 (𝐹𝑟 𝐴𝐹 = (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)))
7 id 22 . . . . 5 (𝐹𝑟 𝐴𝐹𝑟 𝐴)
86, 7eqbrtrrd 4835 . . . 4 (𝐹𝑟 𝐴 → (𝑧 ∈ dom 𝐹 ↦ (𝐹𝑧)) ⇝𝑟 𝐴)
93, 5, 8rlimi 14543 . . 3 (𝐹𝑟 𝐴 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1))
10 rlimcl 14533 . . . . . . . 8 (𝐹𝑟 𝐴𝐴 ∈ ℂ)
1110adantr 472 . . . . . . 7 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
1211abscld 14474 . . . . . 6 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (abs‘𝐴) ∈ ℝ)
13 peano2re 10467 . . . . . 6 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
1412, 13syl 17 . . . . 5 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → ((abs‘𝐴) + 1) ∈ ℝ)
152adantlr 706 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
1611adantr 472 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → 𝐴 ∈ ℂ)
1715, 16abs2difd 14495 . . . . . . . . . 10 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)))
1815abscld 14474 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ∈ ℝ)
1912adantr 472 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘𝐴) ∈ ℝ)
2018, 19resubcld 10716 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) ∈ ℝ)
2115, 16subcld 10650 . . . . . . . . . . . 12 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((𝐹𝑧) − 𝐴) ∈ ℂ)
2221abscld 14474 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (abs‘((𝐹𝑧) − 𝐴)) ∈ ℝ)
23 1red 10298 . . . . . . . . . . 11 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → 1 ∈ ℝ)
24 lelttr 10386 . . . . . . . . . . 11 ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ∈ ℝ ∧ (abs‘((𝐹𝑧) − 𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)) ∧ (abs‘((𝐹𝑧) − 𝐴)) < 1) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2520, 22, 23, 24syl3anc 1490 . . . . . . . . . 10 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((((abs‘(𝐹𝑧)) − (abs‘𝐴)) ≤ (abs‘((𝐹𝑧) − 𝐴)) ∧ (abs‘((𝐹𝑧) − 𝐴)) < 1) → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2617, 25mpand 686 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → ((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1))
2718, 19, 23ltsubadd2d 10883 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → (((abs‘(𝐹𝑧)) − (abs‘𝐴)) < 1 ↔ (abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1)))
2826, 27sylibd 230 . . . . . . . 8 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → (abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1)))
2914adantr 472 . . . . . . . . 9 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘𝐴) + 1) ∈ ℝ)
30 ltle 10384 . . . . . . . . 9 (((abs‘(𝐹𝑧)) ∈ ℝ ∧ ((abs‘𝐴) + 1) ∈ ℝ) → ((abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1) → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3118, 29, 30syl2anc 579 . . . . . . . 8 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘(𝐹𝑧)) < ((abs‘𝐴) + 1) → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3228, 31syld 47 . . . . . . 7 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((abs‘((𝐹𝑧) − 𝐴)) < 1 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3332imim2d 57 . . . . . 6 (((𝐹𝑟 𝐴𝑦 ∈ ℝ) ∧ 𝑧 ∈ dom 𝐹) → ((𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → (𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3433ralimdva 3109 . . . . 5 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
35 breq2 4815 . . . . . . . 8 (𝑤 = ((abs‘𝐴) + 1) → ((abs‘(𝐹𝑧)) ≤ 𝑤 ↔ (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1)))
3635imbi2d 331 . . . . . . 7 (𝑤 = ((abs‘𝐴) + 1) → ((𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤) ↔ (𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3736ralbidv 3133 . . . . . 6 (𝑤 = ((abs‘𝐴) + 1) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤) ↔ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))))
3837rspcev 3462 . . . . 5 ((((abs‘𝐴) + 1) ∈ ℝ ∧ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ ((abs‘𝐴) + 1))) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤))
3914, 34, 38syl6an 674 . . . 4 ((𝐹𝑟 𝐴𝑦 ∈ ℝ) → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
4039reximdva 3163 . . 3 (𝐹𝑟 𝐴 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 1) → ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
419, 40mpd 15 . 2 (𝐹𝑟 𝐴 → ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤))
42 rlimss 14532 . . 3 (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)
43 elo12 14557 . . 3 ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
441, 42, 43syl2anc 579 . 2 (𝐹𝑟 𝐴 → (𝐹 ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑤)))
4541, 44mpbird 248 1 (𝐹𝑟 𝐴𝐹 ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  wrex 3056  wss 3734   class class class wbr 4811  cmpt 4890  dom cdm 5279  wf 6066  cfv 6070  (class class class)co 6846  cc 10191  cr 10192  1c1 10194   + caddc 10196   < clt 10332  cle 10333  cmin 10524  +crp 12033  abscabs 14273  𝑟 crli 14515  𝑂(1)co1 14516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-er 7951  df-pm 8067  df-en 8165  df-dom 8166  df-sdom 8167  df-sup 8559  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-n0 11543  df-z 11629  df-uz 11892  df-rp 12034  df-ico 12388  df-seq 13014  df-exp 13073  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-rlim 14519  df-o1 14520
This theorem is referenced by:  rlimdmo1  14647  o1const  14649  chebbnd2  25471  chto1lb  25472  chpo1ub  25474  vmadivsum  25476  dchrvmasumlem2  25492  dchrisum0lem1  25510  dchrisum0lem2a  25511  mudivsum  25524  mulog2sumlem2  25529  vmalogdivsum2  25532  2vmadivsumlem  25534  selberglem2  25540  selberg2lem  25544  selberg4lem1  25554  pntrsumo1  25559  pntrlog2bndlem2  25572  pntrlog2bndlem4  25574  pntrlog2bndlem5  25575
  Copyright terms: Public domain W3C validator