| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimmptrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016.) |
| Ref | Expression |
|---|---|
| rlimabs.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| rlimabs.2 | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
| Ref | Expression |
|---|---|
| rlimmptrcl | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimabs.2 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
| 2 | rlimf 15537 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → (𝑘 ∈ 𝐴 ↦ 𝐵):dom (𝑘 ∈ 𝐴 ↦ 𝐵)⟶ℂ) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):dom (𝑘 ∈ 𝐴 ↦ 𝐵)⟶ℂ) |
| 4 | eqid 2737 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 5 | rlimabs.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 6 | 4, 5 | dmmptd 6713 | . . . 4 ⊢ (𝜑 → dom (𝑘 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 7 | 6 | feq2d 6722 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵):dom (𝑘 ∈ 𝐴 ↦ 𝐵)⟶ℂ ↔ (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ)) |
| 8 | 3, 7 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 9 | 8 | fvmptelcdm 7133 | 1 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5143 ↦ cmpt 5225 dom cdm 5685 ⟶wf 6557 ℂcc 11153 ⇝𝑟 crli 15521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-pm 8869 df-rlim 15525 |
| This theorem is referenced by: rlimabs 15645 rlimcj 15646 rlimre 15647 rlimim 15648 rlimadd 15679 rlimsub 15680 rlimmul 15681 rlimdiv 15682 rlimneg 15683 fsumrlim 15847 dvfsumrlim 26072 rlimcxp 27017 cxploglim2 27022 |
| Copyright terms: Public domain | W3C validator |