![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimmptrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016.) |
Ref | Expression |
---|---|
rlimabs.1 | β’ ((π β§ π β π΄) β π΅ β π) |
rlimabs.2 | β’ (π β (π β π΄ β¦ π΅) βπ πΆ) |
Ref | Expression |
---|---|
rlimmptrcl | β’ ((π β§ π β π΄) β π΅ β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimabs.2 | . . . 4 β’ (π β (π β π΄ β¦ π΅) βπ πΆ) | |
2 | rlimf 15441 | . . . 4 β’ ((π β π΄ β¦ π΅) βπ πΆ β (π β π΄ β¦ π΅):dom (π β π΄ β¦ π΅)βΆβ) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π β (π β π΄ β¦ π΅):dom (π β π΄ β¦ π΅)βΆβ) |
4 | eqid 2732 | . . . . 5 β’ (π β π΄ β¦ π΅) = (π β π΄ β¦ π΅) | |
5 | rlimabs.1 | . . . . 5 β’ ((π β§ π β π΄) β π΅ β π) | |
6 | 4, 5 | dmmptd 6692 | . . . 4 β’ (π β dom (π β π΄ β¦ π΅) = π΄) |
7 | 6 | feq2d 6700 | . . 3 β’ (π β ((π β π΄ β¦ π΅):dom (π β π΄ β¦ π΅)βΆβ β (π β π΄ β¦ π΅):π΄βΆβ)) |
8 | 3, 7 | mpbid 231 | . 2 β’ (π β (π β π΄ β¦ π΅):π΄βΆβ) |
9 | 8 | fvmptelcdm 7109 | 1 β’ ((π β§ π β π΄) β π΅ β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β wcel 2106 class class class wbr 5147 β¦ cmpt 5230 dom cdm 5675 βΆwf 6536 βcc 11104 βπ crli 15425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-pm 8819 df-rlim 15429 |
This theorem is referenced by: rlimabs 15549 rlimcj 15550 rlimre 15551 rlimim 15552 rlimadd 15583 rlimaddOLD 15584 rlimsub 15585 rlimmul 15586 rlimmulOLD 15587 rlimdiv 15588 rlimneg 15589 fsumrlim 15753 dvfsumrlim 25539 rlimcxp 26467 cxploglim2 26472 |
Copyright terms: Public domain | W3C validator |