MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimmptrcl Structured version   Visualization version   GIF version

Theorem rlimmptrcl 15517
Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimabs.1 ((𝜑𝑘𝐴) → 𝐵𝑉)
rlimabs.2 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
Assertion
Ref Expression
rlimmptrcl ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem rlimmptrcl
StepHypRef Expression
1 rlimabs.2 . . . 4 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
2 rlimf 15410 . . . 4 ((𝑘𝐴𝐵) ⇝𝑟 𝐶 → (𝑘𝐴𝐵):dom (𝑘𝐴𝐵)⟶ℂ)
31, 2syl 17 . . 3 (𝜑 → (𝑘𝐴𝐵):dom (𝑘𝐴𝐵)⟶ℂ)
4 eqid 2733 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
5 rlimabs.1 . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑉)
64, 5dmmptd 6631 . . . 4 (𝜑 → dom (𝑘𝐴𝐵) = 𝐴)
76feq2d 6640 . . 3 (𝜑 → ((𝑘𝐴𝐵):dom (𝑘𝐴𝐵)⟶ℂ ↔ (𝑘𝐴𝐵):𝐴⟶ℂ))
83, 7mpbid 232 . 2 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
98fvmptelcdm 7052 1 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113   class class class wbr 5093  cmpt 5174  dom cdm 5619  wf 6482  cc 11011  𝑟 crli 15394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-pm 8759  df-rlim 15398
This theorem is referenced by:  rlimabs  15518  rlimcj  15519  rlimre  15520  rlimim  15521  rlimadd  15552  rlimsub  15553  rlimmul  15554  rlimdiv  15555  rlimneg  15556  fsumrlim  15720  dvfsumrlim  25966  rlimcxp  26912  cxploglim2  26917
  Copyright terms: Public domain W3C validator