![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimmptrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016.) |
Ref | Expression |
---|---|
rlimabs.1 | β’ ((π β§ π β π΄) β π΅ β π) |
rlimabs.2 | β’ (π β (π β π΄ β¦ π΅) βπ πΆ) |
Ref | Expression |
---|---|
rlimmptrcl | β’ ((π β§ π β π΄) β π΅ β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimabs.2 | . . . 4 β’ (π β (π β π΄ β¦ π΅) βπ πΆ) | |
2 | rlimf 15475 | . . . 4 β’ ((π β π΄ β¦ π΅) βπ πΆ β (π β π΄ β¦ π΅):dom (π β π΄ β¦ π΅)βΆβ) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π β (π β π΄ β¦ π΅):dom (π β π΄ β¦ π΅)βΆβ) |
4 | eqid 2725 | . . . . 5 β’ (π β π΄ β¦ π΅) = (π β π΄ β¦ π΅) | |
5 | rlimabs.1 | . . . . 5 β’ ((π β§ π β π΄) β π΅ β π) | |
6 | 4, 5 | dmmptd 6694 | . . . 4 β’ (π β dom (π β π΄ β¦ π΅) = π΄) |
7 | 6 | feq2d 6702 | . . 3 β’ (π β ((π β π΄ β¦ π΅):dom (π β π΄ β¦ π΅)βΆβ β (π β π΄ β¦ π΅):π΄βΆβ)) |
8 | 3, 7 | mpbid 231 | . 2 β’ (π β (π β π΄ β¦ π΅):π΄βΆβ) |
9 | 8 | fvmptelcdm 7117 | 1 β’ ((π β§ π β π΄) β π΅ β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β wcel 2098 class class class wbr 5143 β¦ cmpt 5226 dom cdm 5672 βΆwf 6538 βcc 11134 βπ crli 15459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-pm 8844 df-rlim 15463 |
This theorem is referenced by: rlimabs 15583 rlimcj 15584 rlimre 15585 rlimim 15586 rlimadd 15617 rlimaddOLD 15618 rlimsub 15619 rlimmul 15620 rlimmulOLD 15621 rlimdiv 15622 rlimneg 15623 fsumrlim 15787 dvfsumrlim 25982 rlimcxp 26922 cxploglim2 26927 |
Copyright terms: Public domain | W3C validator |