MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimmptrcl Structured version   Visualization version   GIF version

Theorem rlimmptrcl 15317
Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimabs.1 ((𝜑𝑘𝐴) → 𝐵𝑉)
rlimabs.2 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
Assertion
Ref Expression
rlimmptrcl ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem rlimmptrcl
StepHypRef Expression
1 rlimabs.2 . . . 4 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
2 rlimf 15210 . . . 4 ((𝑘𝐴𝐵) ⇝𝑟 𝐶 → (𝑘𝐴𝐵):dom (𝑘𝐴𝐵)⟶ℂ)
31, 2syl 17 . . 3 (𝜑 → (𝑘𝐴𝐵):dom (𝑘𝐴𝐵)⟶ℂ)
4 eqid 2738 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
5 rlimabs.1 . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑉)
64, 5dmmptd 6578 . . . 4 (𝜑 → dom (𝑘𝐴𝐵) = 𝐴)
76feq2d 6586 . . 3 (𝜑 → ((𝑘𝐴𝐵):dom (𝑘𝐴𝐵)⟶ℂ ↔ (𝑘𝐴𝐵):𝐴⟶ℂ))
83, 7mpbid 231 . 2 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
98fvmptelrn 6987 1 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106   class class class wbr 5074  cmpt 5157  dom cdm 5589  wf 6429  cc 10869  𝑟 crli 15194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-pm 8618  df-rlim 15198
This theorem is referenced by:  rlimabs  15318  rlimcj  15319  rlimre  15320  rlimim  15321  rlimadd  15352  rlimaddOLD  15353  rlimsub  15354  rlimmul  15355  rlimmulOLD  15356  rlimdiv  15357  rlimneg  15358  fsumrlim  15523  dvfsumrlim  25195  rlimcxp  26123  cxploglim2  26128
  Copyright terms: Public domain W3C validator