MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimmptrcl Structured version   Visualization version   GIF version

Theorem rlimmptrcl 15574
Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimabs.1 ((𝜑𝑘𝐴) → 𝐵𝑉)
rlimabs.2 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
Assertion
Ref Expression
rlimmptrcl ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem rlimmptrcl
StepHypRef Expression
1 rlimabs.2 . . . 4 (𝜑 → (𝑘𝐴𝐵) ⇝𝑟 𝐶)
2 rlimf 15467 . . . 4 ((𝑘𝐴𝐵) ⇝𝑟 𝐶 → (𝑘𝐴𝐵):dom (𝑘𝐴𝐵)⟶ℂ)
31, 2syl 17 . . 3 (𝜑 → (𝑘𝐴𝐵):dom (𝑘𝐴𝐵)⟶ℂ)
4 eqid 2729 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
5 rlimabs.1 . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑉)
64, 5dmmptd 6663 . . . 4 (𝜑 → dom (𝑘𝐴𝐵) = 𝐴)
76feq2d 6672 . . 3 (𝜑 → ((𝑘𝐴𝐵):dom (𝑘𝐴𝐵)⟶ℂ ↔ (𝑘𝐴𝐵):𝐴⟶ℂ))
83, 7mpbid 232 . 2 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
98fvmptelcdm 7085 1 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5107  cmpt 5188  dom cdm 5638  wf 6507  cc 11066  𝑟 crli 15451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-pm 8802  df-rlim 15455
This theorem is referenced by:  rlimabs  15575  rlimcj  15576  rlimre  15577  rlimim  15578  rlimadd  15609  rlimsub  15610  rlimmul  15611  rlimdiv  15612  rlimneg  15613  fsumrlim  15777  dvfsumrlim  25938  rlimcxp  26884  cxploglim2  26889
  Copyright terms: Public domain W3C validator