![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimmptrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016.) |
Ref | Expression |
---|---|
rlimabs.1 | β’ ((π β§ π β π΄) β π΅ β π) |
rlimabs.2 | β’ (π β (π β π΄ β¦ π΅) βπ πΆ) |
Ref | Expression |
---|---|
rlimmptrcl | β’ ((π β§ π β π΄) β π΅ β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimabs.2 | . . . 4 β’ (π β (π β π΄ β¦ π΅) βπ πΆ) | |
2 | rlimf 15451 | . . . 4 β’ ((π β π΄ β¦ π΅) βπ πΆ β (π β π΄ β¦ π΅):dom (π β π΄ β¦ π΅)βΆβ) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π β (π β π΄ β¦ π΅):dom (π β π΄ β¦ π΅)βΆβ) |
4 | eqid 2726 | . . . . 5 β’ (π β π΄ β¦ π΅) = (π β π΄ β¦ π΅) | |
5 | rlimabs.1 | . . . . 5 β’ ((π β§ π β π΄) β π΅ β π) | |
6 | 4, 5 | dmmptd 6689 | . . . 4 β’ (π β dom (π β π΄ β¦ π΅) = π΄) |
7 | 6 | feq2d 6697 | . . 3 β’ (π β ((π β π΄ β¦ π΅):dom (π β π΄ β¦ π΅)βΆβ β (π β π΄ β¦ π΅):π΄βΆβ)) |
8 | 3, 7 | mpbid 231 | . 2 β’ (π β (π β π΄ β¦ π΅):π΄βΆβ) |
9 | 8 | fvmptelcdm 7108 | 1 β’ ((π β§ π β π΄) β π΅ β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β wcel 2098 class class class wbr 5141 β¦ cmpt 5224 dom cdm 5669 βΆwf 6533 βcc 11110 βπ crli 15435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-pm 8825 df-rlim 15439 |
This theorem is referenced by: rlimabs 15559 rlimcj 15560 rlimre 15561 rlimim 15562 rlimadd 15593 rlimaddOLD 15594 rlimsub 15595 rlimmul 15596 rlimmulOLD 15597 rlimdiv 15598 rlimneg 15599 fsumrlim 15763 dvfsumrlim 25921 rlimcxp 26861 cxploglim2 26866 |
Copyright terms: Public domain | W3C validator |