| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimmptrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a real limit. (Contributed by Mario Carneiro, 10-May-2016.) |
| Ref | Expression |
|---|---|
| rlimabs.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| rlimabs.2 | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
| Ref | Expression |
|---|---|
| rlimmptrcl | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimabs.2 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
| 2 | rlimf 15405 | . . . 4 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → (𝑘 ∈ 𝐴 ↦ 𝐵):dom (𝑘 ∈ 𝐴 ↦ 𝐵)⟶ℂ) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):dom (𝑘 ∈ 𝐴 ↦ 𝐵)⟶ℂ) |
| 4 | eqid 2731 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 5 | rlimabs.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 6 | 4, 5 | dmmptd 6626 | . . . 4 ⊢ (𝜑 → dom (𝑘 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 7 | 6 | feq2d 6635 | . . 3 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵):dom (𝑘 ∈ 𝐴 ↦ 𝐵)⟶ℂ ↔ (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ)) |
| 8 | 3, 7 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 9 | 8 | fvmptelcdm 7046 | 1 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5091 ↦ cmpt 5172 dom cdm 5616 ⟶wf 6477 ℂcc 11001 ⇝𝑟 crli 15389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-pm 8753 df-rlim 15393 |
| This theorem is referenced by: rlimabs 15513 rlimcj 15514 rlimre 15515 rlimim 15516 rlimadd 15547 rlimsub 15548 rlimmul 15549 rlimdiv 15550 rlimneg 15551 fsumrlim 15715 dvfsumrlim 25963 rlimcxp 26909 cxploglim2 26914 |
| Copyright terms: Public domain | W3C validator |