MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimres Structured version   Visualization version   GIF version

Theorem rlimres 15524
Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimres (𝐹𝑟 𝐴 → (𝐹𝐵) ⇝𝑟 𝐴)

Proof of Theorem rlimres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4200 . . . . . . . 8 (dom 𝐹𝐵) ⊆ dom 𝐹
2 ssralv 4015 . . . . . . . 8 ((dom 𝐹𝐵) ⊆ dom 𝐹 → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)))
31, 2ax-mp 5 . . . . . . 7 (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))
43reximi 3067 . . . . . 6 (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))
54ralimi 3066 . . . . 5 (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))
65anim2i 617 . . . 4 ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)))
76a1i 11 . . 3 (𝐹𝑟 𝐴 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))))
8 rlimf 15467 . . . 4 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
9 rlimss 15468 . . . 4 (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)
10 eqidd 2730 . . . 4 ((𝐹𝑟 𝐴𝑧 ∈ dom 𝐹) → (𝐹𝑧) = (𝐹𝑧))
118, 9, 10rlim 15461 . . 3 (𝐹𝑟 𝐴 → (𝐹𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))))
12 fssres 6726 . . . . . 6 ((𝐹:dom 𝐹⟶ℂ ∧ (dom 𝐹𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶ℂ)
138, 1, 12sylancl 586 . . . . 5 (𝐹𝑟 𝐴 → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶ℂ)
14 resres 5963 . . . . . . 7 ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ (dom 𝐹𝐵))
15 ffn 6688 . . . . . . . . 9 (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹)
16 fnresdm 6637 . . . . . . . . 9 (𝐹 Fn dom 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
178, 15, 163syl 18 . . . . . . . 8 (𝐹𝑟 𝐴 → (𝐹 ↾ dom 𝐹) = 𝐹)
1817reseq1d 5949 . . . . . . 7 (𝐹𝑟 𝐴 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹𝐵))
1914, 18eqtr3id 2778 . . . . . 6 (𝐹𝑟 𝐴 → (𝐹 ↾ (dom 𝐹𝐵)) = (𝐹𝐵))
2019feq1d 6670 . . . . 5 (𝐹𝑟 𝐴 → ((𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶ℂ ↔ (𝐹𝐵):(dom 𝐹𝐵)⟶ℂ))
2113, 20mpbid 232 . . . 4 (𝐹𝑟 𝐴 → (𝐹𝐵):(dom 𝐹𝐵)⟶ℂ)
221, 9sstrid 3958 . . . 4 (𝐹𝑟 𝐴 → (dom 𝐹𝐵) ⊆ ℝ)
23 elinel2 4165 . . . . . 6 (𝑧 ∈ (dom 𝐹𝐵) → 𝑧𝐵)
2423fvresd 6878 . . . . 5 (𝑧 ∈ (dom 𝐹𝐵) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
2524adantl 481 . . . 4 ((𝐹𝑟 𝐴𝑧 ∈ (dom 𝐹𝐵)) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
2621, 22, 25rlim 15461 . . 3 (𝐹𝑟 𝐴 → ((𝐹𝐵) ⇝𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))))
277, 11, 263imtr4d 294 . 2 (𝐹𝑟 𝐴 → (𝐹𝑟 𝐴 → (𝐹𝐵) ⇝𝑟 𝐴))
2827pm2.43i 52 1 (𝐹𝑟 𝐴 → (𝐹𝐵) ⇝𝑟 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3913  wss 3914   class class class wbr 5107  dom cdm 5638  cres 5640   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067   < clt 11208  cle 11209  cmin 11405  +crp 12951  abscabs 15200  𝑟 crli 15451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-pm 8802  df-rlim 15455
This theorem is referenced by:  rlimres2  15527  pnt  27525
  Copyright terms: Public domain W3C validator