MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimres Structured version   Visualization version   GIF version

Theorem rlimres 15509
Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimres (𝐹𝑟 𝐴 → (𝐹𝐵) ⇝𝑟 𝐴)

Proof of Theorem rlimres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4228 . . . . . . . 8 (dom 𝐹𝐵) ⊆ dom 𝐹
2 ssralv 4050 . . . . . . . 8 ((dom 𝐹𝐵) ⊆ dom 𝐹 → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)))
31, 2ax-mp 5 . . . . . . 7 (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))
43reximi 3083 . . . . . 6 (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))
54ralimi 3082 . . . . 5 (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))
65anim2i 616 . . . 4 ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)))
76a1i 11 . . 3 (𝐹𝑟 𝐴 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))))
8 rlimf 15452 . . . 4 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
9 rlimss 15453 . . . 4 (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)
10 eqidd 2732 . . . 4 ((𝐹𝑟 𝐴𝑧 ∈ dom 𝐹) → (𝐹𝑧) = (𝐹𝑧))
118, 9, 10rlim 15446 . . 3 (𝐹𝑟 𝐴 → (𝐹𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))))
12 fssres 6757 . . . . . 6 ((𝐹:dom 𝐹⟶ℂ ∧ (dom 𝐹𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶ℂ)
138, 1, 12sylancl 585 . . . . 5 (𝐹𝑟 𝐴 → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶ℂ)
14 resres 5994 . . . . . . 7 ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ (dom 𝐹𝐵))
15 ffn 6717 . . . . . . . . 9 (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹)
16 fnresdm 6669 . . . . . . . . 9 (𝐹 Fn dom 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
178, 15, 163syl 18 . . . . . . . 8 (𝐹𝑟 𝐴 → (𝐹 ↾ dom 𝐹) = 𝐹)
1817reseq1d 5980 . . . . . . 7 (𝐹𝑟 𝐴 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹𝐵))
1914, 18eqtr3id 2785 . . . . . 6 (𝐹𝑟 𝐴 → (𝐹 ↾ (dom 𝐹𝐵)) = (𝐹𝐵))
2019feq1d 6702 . . . . 5 (𝐹𝑟 𝐴 → ((𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶ℂ ↔ (𝐹𝐵):(dom 𝐹𝐵)⟶ℂ))
2113, 20mpbid 231 . . . 4 (𝐹𝑟 𝐴 → (𝐹𝐵):(dom 𝐹𝐵)⟶ℂ)
221, 9sstrid 3993 . . . 4 (𝐹𝑟 𝐴 → (dom 𝐹𝐵) ⊆ ℝ)
23 elinel2 4196 . . . . . 6 (𝑧 ∈ (dom 𝐹𝐵) → 𝑧𝐵)
2423fvresd 6911 . . . . 5 (𝑧 ∈ (dom 𝐹𝐵) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
2524adantl 481 . . . 4 ((𝐹𝑟 𝐴𝑧 ∈ (dom 𝐹𝐵)) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
2621, 22, 25rlim 15446 . . 3 (𝐹𝑟 𝐴 → ((𝐹𝐵) ⇝𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))))
277, 11, 263imtr4d 294 . 2 (𝐹𝑟 𝐴 → (𝐹𝑟 𝐴 → (𝐹𝐵) ⇝𝑟 𝐴))
2827pm2.43i 52 1 (𝐹𝑟 𝐴 → (𝐹𝐵) ⇝𝑟 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  wrex 3069  cin 3947  wss 3948   class class class wbr 5148  dom cdm 5676  cres 5678   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  cc 11114  cr 11115   < clt 11255  cle 11256  cmin 11451  +crp 12981  abscabs 15188  𝑟 crli 15436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-pm 8829  df-rlim 15440
This theorem is referenced by:  rlimres2  15512  pnt  27462
  Copyright terms: Public domain W3C validator