MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimres Structured version   Visualization version   GIF version

Theorem rlimres 15500
Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimres (𝐹𝑟 𝐴 → (𝐹𝐵) ⇝𝑟 𝐴)

Proof of Theorem rlimres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4196 . . . . . . . 8 (dom 𝐹𝐵) ⊆ dom 𝐹
2 ssralv 4012 . . . . . . . 8 ((dom 𝐹𝐵) ⊆ dom 𝐹 → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)))
31, 2ax-mp 5 . . . . . . 7 (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))
43reximi 3067 . . . . . 6 (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))
54ralimi 3066 . . . . 5 (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))
65anim2i 617 . . . 4 ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)))
76a1i 11 . . 3 (𝐹𝑟 𝐴 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))))
8 rlimf 15443 . . . 4 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
9 rlimss 15444 . . . 4 (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)
10 eqidd 2730 . . . 4 ((𝐹𝑟 𝐴𝑧 ∈ dom 𝐹) → (𝐹𝑧) = (𝐹𝑧))
118, 9, 10rlim 15437 . . 3 (𝐹𝑟 𝐴 → (𝐹𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))))
12 fssres 6708 . . . . . 6 ((𝐹:dom 𝐹⟶ℂ ∧ (dom 𝐹𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶ℂ)
138, 1, 12sylancl 586 . . . . 5 (𝐹𝑟 𝐴 → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶ℂ)
14 resres 5952 . . . . . . 7 ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ (dom 𝐹𝐵))
15 ffn 6670 . . . . . . . . 9 (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹)
16 fnresdm 6619 . . . . . . . . 9 (𝐹 Fn dom 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
178, 15, 163syl 18 . . . . . . . 8 (𝐹𝑟 𝐴 → (𝐹 ↾ dom 𝐹) = 𝐹)
1817reseq1d 5938 . . . . . . 7 (𝐹𝑟 𝐴 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹𝐵))
1914, 18eqtr3id 2778 . . . . . 6 (𝐹𝑟 𝐴 → (𝐹 ↾ (dom 𝐹𝐵)) = (𝐹𝐵))
2019feq1d 6652 . . . . 5 (𝐹𝑟 𝐴 → ((𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶ℂ ↔ (𝐹𝐵):(dom 𝐹𝐵)⟶ℂ))
2113, 20mpbid 232 . . . 4 (𝐹𝑟 𝐴 → (𝐹𝐵):(dom 𝐹𝐵)⟶ℂ)
221, 9sstrid 3955 . . . 4 (𝐹𝑟 𝐴 → (dom 𝐹𝐵) ⊆ ℝ)
23 elinel2 4161 . . . . . 6 (𝑧 ∈ (dom 𝐹𝐵) → 𝑧𝐵)
2423fvresd 6860 . . . . 5 (𝑧 ∈ (dom 𝐹𝐵) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
2524adantl 481 . . . 4 ((𝐹𝑟 𝐴𝑧 ∈ (dom 𝐹𝐵)) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
2621, 22, 25rlim 15437 . . 3 (𝐹𝑟 𝐴 → ((𝐹𝐵) ⇝𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))))
277, 11, 263imtr4d 294 . 2 (𝐹𝑟 𝐴 → (𝐹𝑟 𝐴 → (𝐹𝐵) ⇝𝑟 𝐴))
2827pm2.43i 52 1 (𝐹𝑟 𝐴 → (𝐹𝐵) ⇝𝑟 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3910  wss 3911   class class class wbr 5102  dom cdm 5631  cres 5633   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043   < clt 11184  cle 11185  cmin 11381  +crp 12927  abscabs 15176  𝑟 crli 15427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-pm 8779  df-rlim 15431
This theorem is referenced by:  rlimres2  15503  pnt  27501
  Copyright terms: Public domain W3C validator