Step | Hyp | Ref
| Expression |
1 | | inss1 4162 |
. . . . . . . 8
⊢ (dom
𝐹 ∩ 𝐵) ⊆ dom 𝐹 |
2 | | ssralv 3987 |
. . . . . . . 8
⊢ ((dom
𝐹 ∩ 𝐵) ⊆ dom 𝐹 → (∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 𝑥) → ∀𝑧 ∈ (dom 𝐹 ∩ 𝐵)(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 𝑥))) |
3 | 1, 2 | ax-mp 5 |
. . . . . . 7
⊢
(∀𝑧 ∈
dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 𝑥) → ∀𝑧 ∈ (dom 𝐹 ∩ 𝐵)(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 𝑥)) |
4 | 3 | reximi 3178 |
. . . . . 6
⊢
(∃𝑦 ∈
ℝ ∀𝑧 ∈
dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹 ∩ 𝐵)(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 𝑥)) |
5 | 4 | ralimi 3087 |
. . . . 5
⊢
(∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹 ∩ 𝐵)(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 𝑥)) |
6 | 5 | anim2i 617 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑧 ∈ (dom 𝐹 ∩ 𝐵)(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 𝑥))) |
7 | 6 | a1i 11 |
. . 3
⊢ (𝐹 ⇝𝑟
𝐴 → ((𝐴 ∈ ℂ ∧
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑧 ∈ (dom 𝐹 ∩ 𝐵)(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 𝑥)))) |
8 | | rlimf 15210 |
. . . 4
⊢ (𝐹 ⇝𝑟
𝐴 → 𝐹:dom 𝐹⟶ℂ) |
9 | | rlimss 15211 |
. . . 4
⊢ (𝐹 ⇝𝑟
𝐴 → dom 𝐹 ⊆
ℝ) |
10 | | eqidd 2739 |
. . . 4
⊢ ((𝐹 ⇝𝑟
𝐴 ∧ 𝑧 ∈ dom 𝐹) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
11 | 8, 9, 10 | rlim 15204 |
. . 3
⊢ (𝐹 ⇝𝑟
𝐴 → (𝐹 ⇝𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑧 ∈ dom 𝐹(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 𝑥)))) |
12 | | fssres 6640 |
. . . . . 6
⊢ ((𝐹:dom 𝐹⟶ℂ ∧ (dom 𝐹 ∩ 𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶ℂ) |
13 | 8, 1, 12 | sylancl 586 |
. . . . 5
⊢ (𝐹 ⇝𝑟
𝐴 → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶ℂ) |
14 | | resres 5904 |
. . . . . . 7
⊢ ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ (dom 𝐹 ∩ 𝐵)) |
15 | | ffn 6600 |
. . . . . . . . 9
⊢ (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹) |
16 | | fnresdm 6551 |
. . . . . . . . 9
⊢ (𝐹 Fn dom 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) |
17 | 8, 15, 16 | 3syl 18 |
. . . . . . . 8
⊢ (𝐹 ⇝𝑟
𝐴 → (𝐹 ↾ dom 𝐹) = 𝐹) |
18 | 17 | reseq1d 5890 |
. . . . . . 7
⊢ (𝐹 ⇝𝑟
𝐴 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ 𝐵)) |
19 | 14, 18 | eqtr3id 2792 |
. . . . . 6
⊢ (𝐹 ⇝𝑟
𝐴 → (𝐹 ↾ (dom 𝐹 ∩ 𝐵)) = (𝐹 ↾ 𝐵)) |
20 | 19 | feq1d 6585 |
. . . . 5
⊢ (𝐹 ⇝𝑟
𝐴 → ((𝐹 ↾ (dom 𝐹 ∩ 𝐵)):(dom 𝐹 ∩ 𝐵)⟶ℂ ↔ (𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶ℂ)) |
21 | 13, 20 | mpbid 231 |
. . . 4
⊢ (𝐹 ⇝𝑟
𝐴 → (𝐹 ↾ 𝐵):(dom 𝐹 ∩ 𝐵)⟶ℂ) |
22 | 1, 9 | sstrid 3932 |
. . . 4
⊢ (𝐹 ⇝𝑟
𝐴 → (dom 𝐹 ∩ 𝐵) ⊆ ℝ) |
23 | | elinel2 4130 |
. . . . . 6
⊢ (𝑧 ∈ (dom 𝐹 ∩ 𝐵) → 𝑧 ∈ 𝐵) |
24 | 23 | fvresd 6794 |
. . . . 5
⊢ (𝑧 ∈ (dom 𝐹 ∩ 𝐵) → ((𝐹 ↾ 𝐵)‘𝑧) = (𝐹‘𝑧)) |
25 | 24 | adantl 482 |
. . . 4
⊢ ((𝐹 ⇝𝑟
𝐴 ∧ 𝑧 ∈ (dom 𝐹 ∩ 𝐵)) → ((𝐹 ↾ 𝐵)‘𝑧) = (𝐹‘𝑧)) |
26 | 21, 22, 25 | rlim 15204 |
. . 3
⊢ (𝐹 ⇝𝑟
𝐴 → ((𝐹 ↾ 𝐵) ⇝𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈ ℝ
∀𝑧 ∈ (dom 𝐹 ∩ 𝐵)(𝑦 ≤ 𝑧 → (abs‘((𝐹‘𝑧) − 𝐴)) < 𝑥)))) |
27 | 7, 11, 26 | 3imtr4d 294 |
. 2
⊢ (𝐹 ⇝𝑟
𝐴 → (𝐹 ⇝𝑟 𝐴 → (𝐹 ↾ 𝐵) ⇝𝑟 𝐴)) |
28 | 27 | pm2.43i 52 |
1
⊢ (𝐹 ⇝𝑟
𝐴 → (𝐹 ↾ 𝐵) ⇝𝑟 𝐴) |