| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimcl | Structured version Visualization version GIF version | ||
| Description: Closure of the limit of a sequence of complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| rlimcl | ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimf 15467 | . . . 4 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹:dom 𝐹⟶ℂ) | |
| 2 | rlimss 15468 | . . . 4 ⊢ (𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ) | |
| 3 | eqidd 2730 | . . . 4 ⊢ ((𝐹 ⇝𝑟 𝐴 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 4 | 1, 2, 3 | rlim 15461 | . . 3 ⊢ (𝐹 ⇝𝑟 𝐴 → (𝐹 ⇝𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑧 ≤ 𝑥 → (abs‘((𝐹‘𝑥) − 𝐴)) < 𝑦)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ⇝𝑟 𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑧 ≤ 𝑥 → (abs‘((𝐹‘𝑥) − 𝐴)) < 𝑦))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 < clt 11208 ≤ cle 11209 − cmin 11405 ℝ+crp 12951 abscabs 15200 ⇝𝑟 crli 15451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-pm 8802 df-rlim 15455 |
| This theorem is referenced by: rlimi 15479 rlimclim1 15511 rlimuni 15516 rlimresb 15531 rlimcld2 15544 rlimabs 15575 rlimcj 15576 rlimre 15577 rlimim 15578 rlimo1 15583 rlimadd 15609 rlimsub 15610 rlimmul 15611 rlimdiv 15612 rlimsqzlem 15615 fsumrlim 15777 dchrisum0lem2a 27428 mulog2sumlem2 27446 mulog2sumlem3 27447 |
| Copyright terms: Public domain | W3C validator |