| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimcl | Structured version Visualization version GIF version | ||
| Description: Closure of the limit of a sequence of complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| rlimcl | ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimf 15474 | . . . 4 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹:dom 𝐹⟶ℂ) | |
| 2 | rlimss 15475 | . . . 4 ⊢ (𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ) | |
| 3 | eqidd 2731 | . . . 4 ⊢ ((𝐹 ⇝𝑟 𝐴 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 4 | 1, 2, 3 | rlim 15468 | . . 3 ⊢ (𝐹 ⇝𝑟 𝐴 → (𝐹 ⇝𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑧 ≤ 𝑥 → (abs‘((𝐹‘𝑥) − 𝐴)) < 𝑦)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ⇝𝑟 𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑧 ≤ 𝑥 → (abs‘((𝐹‘𝑥) − 𝐴)) < 𝑦))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 < clt 11215 ≤ cle 11216 − cmin 11412 ℝ+crp 12958 abscabs 15207 ⇝𝑟 crli 15458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-pm 8805 df-rlim 15462 |
| This theorem is referenced by: rlimi 15486 rlimclim1 15518 rlimuni 15523 rlimresb 15538 rlimcld2 15551 rlimabs 15582 rlimcj 15583 rlimre 15584 rlimim 15585 rlimo1 15590 rlimadd 15616 rlimsub 15617 rlimmul 15618 rlimdiv 15619 rlimsqzlem 15622 fsumrlim 15784 dchrisum0lem2a 27435 mulog2sumlem2 27453 mulog2sumlem3 27454 |
| Copyright terms: Public domain | W3C validator |