![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimcl | Structured version Visualization version GIF version |
Description: Closure of the limit of a sequence of complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
rlimcl | ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimf 15478 | . . . 4 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹:dom 𝐹⟶ℂ) | |
2 | rlimss 15479 | . . . 4 ⊢ (𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ) | |
3 | eqidd 2729 | . . . 4 ⊢ ((𝐹 ⇝𝑟 𝐴 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
4 | 1, 2, 3 | rlim 15472 | . . 3 ⊢ (𝐹 ⇝𝑟 𝐴 → (𝐹 ⇝𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑧 ≤ 𝑥 → (abs‘((𝐹‘𝑥) − 𝐴)) < 𝑦)))) |
5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ⇝𝑟 𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑧 ≤ 𝑥 → (abs‘((𝐹‘𝑥) − 𝐴)) < 𝑦))) |
6 | 5 | simpld 494 | 1 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐴 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∀wral 3058 ∃wrex 3067 class class class wbr 5148 dom cdm 5678 ‘cfv 6548 (class class class)co 7420 ℂcc 11137 ℝcr 11138 < clt 11279 ≤ cle 11280 − cmin 11475 ℝ+crp 13007 abscabs 15214 ⇝𝑟 crli 15462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-pm 8848 df-rlim 15466 |
This theorem is referenced by: rlimi 15490 rlimclim1 15522 rlimuni 15527 rlimresb 15542 rlimcld2 15555 rlimabs 15586 rlimcj 15587 rlimre 15588 rlimim 15589 rlimo1 15594 rlimadd 15620 rlimaddOLD 15621 rlimsub 15622 rlimmul 15623 rlimmulOLD 15624 rlimdiv 15625 rlimsqzlem 15628 fsumrlim 15790 dchrisum0lem2a 27463 mulog2sumlem2 27481 mulog2sumlem3 27482 |
Copyright terms: Public domain | W3C validator |