| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimcl | Structured version Visualization version GIF version | ||
| Description: Closure of the limit of a sequence of complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| rlimcl | ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimf 15403 | . . . 4 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐹:dom 𝐹⟶ℂ) | |
| 2 | rlimss 15404 | . . . 4 ⊢ (𝐹 ⇝𝑟 𝐴 → dom 𝐹 ⊆ ℝ) | |
| 3 | eqidd 2732 | . . . 4 ⊢ ((𝐹 ⇝𝑟 𝐴 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 4 | 1, 2, 3 | rlim 15397 | . . 3 ⊢ (𝐹 ⇝𝑟 𝐴 → (𝐹 ⇝𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑧 ≤ 𝑥 → (abs‘((𝐹‘𝑥) − 𝐴)) < 𝑦)))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝐹 ⇝𝑟 𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑧 ≤ 𝑥 → (abs‘((𝐹‘𝑥) − 𝐴)) < 𝑦))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝐹 ⇝𝑟 𝐴 → 𝐴 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5086 dom cdm 5611 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 < clt 11141 ≤ cle 11142 − cmin 11339 ℝ+crp 12885 abscabs 15136 ⇝𝑟 crli 15387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-pm 8748 df-rlim 15391 |
| This theorem is referenced by: rlimi 15415 rlimclim1 15447 rlimuni 15452 rlimresb 15467 rlimcld2 15480 rlimabs 15511 rlimcj 15512 rlimre 15513 rlimim 15514 rlimo1 15519 rlimadd 15545 rlimsub 15546 rlimmul 15547 rlimdiv 15548 rlimsqzlem 15551 fsumrlim 15713 dchrisum0lem2a 27450 mulog2sumlem2 27468 mulog2sumlem3 27469 |
| Copyright terms: Public domain | W3C validator |