MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcl Structured version   Visualization version   GIF version

Theorem rlimcl 15212
Description: Closure of the limit of a sequence of complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
rlimcl (𝐹𝑟 𝐴𝐴 ∈ ℂ)

Proof of Theorem rlimcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimf 15210 . . . 4 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
2 rlimss 15211 . . . 4 (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)
3 eqidd 2739 . . . 4 ((𝐹𝑟 𝐴𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹𝑥))
41, 2, 3rlim 15204 . . 3 (𝐹𝑟 𝐴 → (𝐹𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐴)) < 𝑦))))
54ibi 266 . 2 (𝐹𝑟 𝐴 → (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑧𝑥 → (abs‘((𝐹𝑥) − 𝐴)) < 𝑦)))
65simpld 495 1 (𝐹𝑟 𝐴𝐴 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  dom cdm 5589  cfv 6433  (class class class)co 7275  cc 10869  cr 10870   < clt 11009  cle 11010  cmin 11205  +crp 12730  abscabs 14945  𝑟 crli 15194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-pm 8618  df-rlim 15198
This theorem is referenced by:  rlimi  15222  rlimclim1  15254  rlimuni  15259  rlimresb  15274  rlimcld2  15287  rlimabs  15318  rlimcj  15319  rlimre  15320  rlimim  15321  rlimo1  15326  rlimadd  15352  rlimaddOLD  15353  rlimsub  15354  rlimmul  15355  rlimmulOLD  15356  rlimdiv  15357  rlimsqzlem  15360  fsumrlim  15523  dchrisum0lem2a  26665  mulog2sumlem2  26683  mulog2sumlem3  26684
  Copyright terms: Public domain W3C validator