Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimi | Structured version Visualization version GIF version |
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015.) |
Ref | Expression |
---|---|
rlimi.1 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) |
rlimi.2 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
rlimi.3 | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
Ref | Expression |
---|---|
rlimi | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5074 | . . . 4 ⊢ (𝑥 = 𝑅 → ((abs‘(𝐵 − 𝐶)) < 𝑥 ↔ (abs‘(𝐵 − 𝐶)) < 𝑅)) | |
2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑅 → ((𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) |
3 | 2 | rexralbidv 3229 | . 2 ⊢ (𝑥 = 𝑅 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) |
4 | rlimi.3 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
5 | rlimf 15138 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → (𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ) |
7 | rlimi.1 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) | |
8 | eqid 2738 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐴 ↦ 𝐵) = (𝑧 ∈ 𝐴 ↦ 𝐵) | |
9 | 8 | fmpt 6966 | . . . . . . . . 9 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑉) |
10 | 7, 9 | sylib 217 | . . . . . . . 8 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑉) |
11 | 10 | fdmd 6595 | . . . . . . 7 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
12 | 11 | feq2d 6570 | . . . . . 6 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ)) |
13 | 6, 12 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
14 | 8 | fmpt 6966 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
15 | 13, 14 | sylibr 233 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) |
16 | rlimss 15139 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
17 | 4, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
18 | 11, 17 | eqsstrrd 3956 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
19 | rlimcl 15140 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ) | |
20 | 4, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
21 | 15, 18, 20 | rlim2 15133 | . . 3 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
22 | 4, 21 | mpbid 231 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥)) |
23 | rlimi.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
24 | 3, 22, 23 | rspcdva 3554 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 < clt 10940 ≤ cle 10941 − cmin 11135 ℝ+crp 12659 abscabs 14873 ⇝𝑟 crli 15122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-pm 8576 df-rlim 15126 |
This theorem is referenced by: rlimi2 15151 rlimclim1 15182 rlimuni 15187 rlimcld2 15215 rlimcn1 15225 rlimcn3 15227 rlimo1 15254 o1rlimmul 15256 rlimno1 15293 xrlimcnp 26023 rlimcxp 26028 chtppilimlem2 26527 dchrisumlem3 26544 |
Copyright terms: Public domain | W3C validator |