MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimi Structured version   Visualization version   GIF version

Theorem rlimi 15546
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlimi.1 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
rlimi.2 (𝜑𝑅 ∈ ℝ+)
rlimi.3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
Assertion
Ref Expression
rlimi (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵   𝑦,𝐶,𝑧   𝜑,𝑦   𝑦,𝑅,𝑧   𝑧,𝑉
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝑉(𝑦)

Proof of Theorem rlimi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5152 . . . 4 (𝑥 = 𝑅 → ((abs‘(𝐵𝐶)) < 𝑥 ↔ (abs‘(𝐵𝐶)) < 𝑅))
21imbi2d 340 . . 3 (𝑥 = 𝑅 → ((𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
32rexralbidv 3221 . 2 (𝑥 = 𝑅 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
4 rlimi.3 . . 3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
5 rlimf 15534 . . . . . . 7 ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → (𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ)
64, 5syl 17 . . . . . 6 (𝜑 → (𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ)
7 rlimi.1 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
8 eqid 2735 . . . . . . . . . 10 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
98fmpt 7130 . . . . . . . . 9 (∀𝑧𝐴 𝐵𝑉 ↔ (𝑧𝐴𝐵):𝐴𝑉)
107, 9sylib 218 . . . . . . . 8 (𝜑 → (𝑧𝐴𝐵):𝐴𝑉)
1110fdmd 6747 . . . . . . 7 (𝜑 → dom (𝑧𝐴𝐵) = 𝐴)
1211feq2d 6723 . . . . . 6 (𝜑 → ((𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ))
136, 12mpbid 232 . . . . 5 (𝜑 → (𝑧𝐴𝐵):𝐴⟶ℂ)
148fmpt 7130 . . . . 5 (∀𝑧𝐴 𝐵 ∈ ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ)
1513, 14sylibr 234 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
16 rlimss 15535 . . . . . 6 ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → dom (𝑧𝐴𝐵) ⊆ ℝ)
174, 16syl 17 . . . . 5 (𝜑 → dom (𝑧𝐴𝐵) ⊆ ℝ)
1811, 17eqsstrrd 4035 . . . 4 (𝜑𝐴 ⊆ ℝ)
19 rlimcl 15536 . . . . 5 ((𝑧𝐴𝐵) ⇝𝑟 𝐶𝐶 ∈ ℂ)
204, 19syl 17 . . . 4 (𝜑𝐶 ∈ ℂ)
2115, 18, 20rlim2 15529 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
224, 21mpbid 232 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))
23 rlimi.2 . 2 (𝜑𝑅 ∈ ℝ+)
243, 22, 23rspcdva 3623 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wss 3963   class class class wbr 5148  cmpt 5231  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152   < clt 11293  cle 11294  cmin 11490  +crp 13032  abscabs 15270  𝑟 crli 15518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-pm 8868  df-rlim 15522
This theorem is referenced by:  rlimi2  15547  rlimclim1  15578  rlimuni  15583  rlimcld2  15611  rlimcn1  15621  rlimcn3  15623  rlimo1  15650  o1rlimmul  15652  rlimno1  15687  xrlimcnp  27026  rlimcxp  27032  chtppilimlem2  27533  dchrisumlem3  27550
  Copyright terms: Public domain W3C validator