MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimi Structured version   Visualization version   GIF version

Theorem rlimi 14953
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlimi.1 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
rlimi.2 (𝜑𝑅 ∈ ℝ+)
rlimi.3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
Assertion
Ref Expression
rlimi (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵   𝑦,𝐶,𝑧   𝜑,𝑦   𝑦,𝑅,𝑧   𝑧,𝑉
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝑉(𝑦)

Proof of Theorem rlimi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5031 . . . 4 (𝑥 = 𝑅 → ((abs‘(𝐵𝐶)) < 𝑥 ↔ (abs‘(𝐵𝐶)) < 𝑅))
21imbi2d 344 . . 3 (𝑥 = 𝑅 → ((𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
32rexralbidv 3210 . 2 (𝑥 = 𝑅 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
4 rlimi.3 . . 3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
5 rlimf 14941 . . . . . . 7 ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → (𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ)
64, 5syl 17 . . . . . 6 (𝜑 → (𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ)
7 rlimi.1 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
8 eqid 2738 . . . . . . . . . 10 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
98fmpt 6878 . . . . . . . . 9 (∀𝑧𝐴 𝐵𝑉 ↔ (𝑧𝐴𝐵):𝐴𝑉)
107, 9sylib 221 . . . . . . . 8 (𝜑 → (𝑧𝐴𝐵):𝐴𝑉)
1110fdmd 6509 . . . . . . 7 (𝜑 → dom (𝑧𝐴𝐵) = 𝐴)
1211feq2d 6484 . . . . . 6 (𝜑 → ((𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ))
136, 12mpbid 235 . . . . 5 (𝜑 → (𝑧𝐴𝐵):𝐴⟶ℂ)
148fmpt 6878 . . . . 5 (∀𝑧𝐴 𝐵 ∈ ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ)
1513, 14sylibr 237 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
16 rlimss 14942 . . . . . 6 ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → dom (𝑧𝐴𝐵) ⊆ ℝ)
174, 16syl 17 . . . . 5 (𝜑 → dom (𝑧𝐴𝐵) ⊆ ℝ)
1811, 17eqsstrrd 3914 . . . 4 (𝜑𝐴 ⊆ ℝ)
19 rlimcl 14943 . . . . 5 ((𝑧𝐴𝐵) ⇝𝑟 𝐶𝐶 ∈ ℂ)
204, 19syl 17 . . . 4 (𝜑𝐶 ∈ ℂ)
2115, 18, 20rlim2 14936 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
224, 21mpbid 235 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))
23 rlimi.2 . 2 (𝜑𝑅 ∈ ℝ+)
243, 22, 23rspcdva 3526 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2113  wral 3053  wrex 3054  wss 3841   class class class wbr 5027  cmpt 5107  dom cdm 5519  wf 6329  cfv 6333  (class class class)co 7164  cc 10606  cr 10607   < clt 10746  cle 10747  cmin 10941  +crp 12465  abscabs 14676  𝑟 crli 14925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-pm 8433  df-rlim 14929
This theorem is referenced by:  rlimi2  14954  rlimclim1  14985  rlimuni  14990  rlimcld2  15018  rlimcn1  15028  rlimcn3  15030  rlimo1  15057  o1rlimmul  15059  rlimno1  15096  xrlimcnp  25698  rlimcxp  25703  chtppilimlem2  26202  dchrisumlem3  26219
  Copyright terms: Public domain W3C validator