MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimi Structured version   Visualization version   GIF version

Theorem rlimi 14873
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlimi.1 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
rlimi.2 (𝜑𝑅 ∈ ℝ+)
rlimi.3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
Assertion
Ref Expression
rlimi (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵   𝑦,𝐶,𝑧   𝜑,𝑦   𝑦,𝑅,𝑧   𝑧,𝑉
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝑉(𝑦)

Proof of Theorem rlimi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5073 . . . 4 (𝑥 = 𝑅 → ((abs‘(𝐵𝐶)) < 𝑥 ↔ (abs‘(𝐵𝐶)) < 𝑅))
21imbi2d 343 . . 3 (𝑥 = 𝑅 → ((𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
32rexralbidv 3304 . 2 (𝑥 = 𝑅 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
4 rlimi.3 . . 3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
5 rlimf 14861 . . . . . . 7 ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → (𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ)
64, 5syl 17 . . . . . 6 (𝜑 → (𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ)
7 rlimi.1 . . . . . . . . 9 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
8 eqid 2824 . . . . . . . . . 10 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
98fmpt 6877 . . . . . . . . 9 (∀𝑧𝐴 𝐵𝑉 ↔ (𝑧𝐴𝐵):𝐴𝑉)
107, 9sylib 220 . . . . . . . 8 (𝜑 → (𝑧𝐴𝐵):𝐴𝑉)
1110fdmd 6526 . . . . . . 7 (𝜑 → dom (𝑧𝐴𝐵) = 𝐴)
1211feq2d 6503 . . . . . 6 (𝜑 → ((𝑧𝐴𝐵):dom (𝑧𝐴𝐵)⟶ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ))
136, 12mpbid 234 . . . . 5 (𝜑 → (𝑧𝐴𝐵):𝐴⟶ℂ)
148fmpt 6877 . . . . 5 (∀𝑧𝐴 𝐵 ∈ ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ)
1513, 14sylibr 236 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
16 rlimss 14862 . . . . . 6 ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → dom (𝑧𝐴𝐵) ⊆ ℝ)
174, 16syl 17 . . . . 5 (𝜑 → dom (𝑧𝐴𝐵) ⊆ ℝ)
1811, 17eqsstrrd 4009 . . . 4 (𝜑𝐴 ⊆ ℝ)
19 rlimcl 14863 . . . . 5 ((𝑧𝐴𝐵) ⇝𝑟 𝐶𝐶 ∈ ℂ)
204, 19syl 17 . . . 4 (𝜑𝐶 ∈ ℂ)
2115, 18, 20rlim2 14856 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
224, 21mpbid 234 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))
23 rlimi.2 . 2 (𝜑𝑅 ∈ ℝ+)
243, 22, 23rspcdva 3628 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  wral 3141  wrex 3142  wss 3939   class class class wbr 5069  cmpt 5149  dom cdm 5558  wf 6354  cfv 6358  (class class class)co 7159  cc 10538  cr 10539   < clt 10678  cle 10679  cmin 10873  +crp 12392  abscabs 14596  𝑟 crli 14845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-pm 8412  df-rlim 14849
This theorem is referenced by:  rlimi2  14874  rlimclim1  14905  rlimuni  14910  rlimcld2  14938  rlimcn1  14948  rlimcn2  14950  rlimo1  14976  o1rlimmul  14978  rlimno1  15013  xrlimcnp  25549  rlimcxp  25554  chtppilimlem2  26053  dchrisumlem3  26070
  Copyright terms: Public domain W3C validator