![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimi | Structured version Visualization version GIF version |
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015.) |
Ref | Expression |
---|---|
rlimi.1 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) |
rlimi.2 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
rlimi.3 | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
Ref | Expression |
---|---|
rlimi | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . . . 4 ⊢ (𝑥 = 𝑅 → ((abs‘(𝐵 − 𝐶)) < 𝑥 ↔ (abs‘(𝐵 − 𝐶)) < 𝑅)) | |
2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑅 → ((𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) |
3 | 2 | rexralbidv 3229 | . 2 ⊢ (𝑥 = 𝑅 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) |
4 | rlimi.3 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
5 | rlimf 15547 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → (𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ) |
7 | rlimi.1 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) | |
8 | eqid 2740 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐴 ↦ 𝐵) = (𝑧 ∈ 𝐴 ↦ 𝐵) | |
9 | 8 | fmpt 7144 | . . . . . . . . 9 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑉) |
10 | 7, 9 | sylib 218 | . . . . . . . 8 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑉) |
11 | 10 | fdmd 6757 | . . . . . . 7 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
12 | 11 | feq2d 6733 | . . . . . 6 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ)) |
13 | 6, 12 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
14 | 8 | fmpt 7144 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
15 | 13, 14 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) |
16 | rlimss 15548 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
17 | 4, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
18 | 11, 17 | eqsstrrd 4048 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
19 | rlimcl 15549 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ) | |
20 | 4, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
21 | 15, 18, 20 | rlim2 15542 | . . 3 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
22 | 4, 21 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥)) |
23 | rlimi.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
24 | 3, 22, 23 | rspcdva 3636 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 < clt 11324 ≤ cle 11325 − cmin 11520 ℝ+crp 13057 abscabs 15283 ⇝𝑟 crli 15531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-pm 8887 df-rlim 15535 |
This theorem is referenced by: rlimi2 15560 rlimclim1 15591 rlimuni 15596 rlimcld2 15624 rlimcn1 15634 rlimcn3 15636 rlimo1 15663 o1rlimmul 15665 rlimno1 15702 xrlimcnp 27029 rlimcxp 27035 chtppilimlem2 27536 dchrisumlem3 27553 |
Copyright terms: Public domain | W3C validator |