| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimi | Structured version Visualization version GIF version | ||
| Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| rlimi.1 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) |
| rlimi.2 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| rlimi.3 | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
| Ref | Expression |
|---|---|
| rlimi | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5090 | . . . 4 ⊢ (𝑥 = 𝑅 → ((abs‘(𝐵 − 𝐶)) < 𝑥 ↔ (abs‘(𝐵 − 𝐶)) < 𝑅)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑅 → ((𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) |
| 3 | 2 | rexralbidv 3198 | . 2 ⊢ (𝑥 = 𝑅 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) |
| 4 | rlimi.3 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
| 5 | rlimf 15403 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → (𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ) |
| 7 | rlimi.1 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) | |
| 8 | eqid 2731 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐴 ↦ 𝐵) = (𝑧 ∈ 𝐴 ↦ 𝐵) | |
| 9 | 8 | fmpt 7038 | . . . . . . . . 9 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑉) |
| 10 | 7, 9 | sylib 218 | . . . . . . . 8 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑉) |
| 11 | 10 | fdmd 6656 | . . . . . . 7 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 12 | 11 | feq2d 6630 | . . . . . 6 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ)) |
| 13 | 6, 12 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 14 | 8 | fmpt 7038 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 15 | 13, 14 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) |
| 16 | rlimss 15404 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
| 17 | 4, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
| 18 | 11, 17 | eqsstrrd 3965 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 19 | rlimcl 15405 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ) | |
| 20 | 4, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 21 | 15, 18, 20 | rlim2 15398 | . . 3 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 22 | 4, 21 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥)) |
| 23 | rlimi.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 24 | 3, 22, 23 | rspcdva 3573 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 class class class wbr 5086 ↦ cmpt 5167 dom cdm 5611 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 < clt 11141 ≤ cle 11142 − cmin 11339 ℝ+crp 12885 abscabs 15136 ⇝𝑟 crli 15387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-pm 8748 df-rlim 15391 |
| This theorem is referenced by: rlimi2 15416 rlimclim1 15447 rlimuni 15452 rlimcld2 15480 rlimcn1 15490 rlimcn3 15492 rlimo1 15519 o1rlimmul 15521 rlimno1 15556 xrlimcnp 26900 rlimcxp 26906 chtppilimlem2 27407 dchrisumlem3 27424 |
| Copyright terms: Public domain | W3C validator |