| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimi | Structured version Visualization version GIF version | ||
| Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| rlimi.1 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) |
| rlimi.2 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| rlimi.3 | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
| Ref | Expression |
|---|---|
| rlimi | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5114 | . . . 4 ⊢ (𝑥 = 𝑅 → ((abs‘(𝐵 − 𝐶)) < 𝑥 ↔ (abs‘(𝐵 − 𝐶)) < 𝑅)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑅 → ((𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) |
| 3 | 2 | rexralbidv 3204 | . 2 ⊢ (𝑥 = 𝑅 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) |
| 4 | rlimi.3 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
| 5 | rlimf 15474 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → (𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ) |
| 7 | rlimi.1 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) | |
| 8 | eqid 2730 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐴 ↦ 𝐵) = (𝑧 ∈ 𝐴 ↦ 𝐵) | |
| 9 | 8 | fmpt 7085 | . . . . . . . . 9 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑉) |
| 10 | 7, 9 | sylib 218 | . . . . . . . 8 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑉) |
| 11 | 10 | fdmd 6701 | . . . . . . 7 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 12 | 11 | feq2d 6675 | . . . . . 6 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ)) |
| 13 | 6, 12 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 14 | 8 | fmpt 7085 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 15 | 13, 14 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) |
| 16 | rlimss 15475 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
| 17 | 4, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
| 18 | 11, 17 | eqsstrrd 3985 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 19 | rlimcl 15476 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ) | |
| 20 | 4, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 21 | 15, 18, 20 | rlim2 15469 | . . 3 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 22 | 4, 21 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥)) |
| 23 | rlimi.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 24 | 3, 22, 23 | rspcdva 3592 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 < clt 11215 ≤ cle 11216 − cmin 11412 ℝ+crp 12958 abscabs 15207 ⇝𝑟 crli 15458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-pm 8805 df-rlim 15462 |
| This theorem is referenced by: rlimi2 15487 rlimclim1 15518 rlimuni 15523 rlimcld2 15551 rlimcn1 15561 rlimcn3 15563 rlimo1 15590 o1rlimmul 15592 rlimno1 15627 xrlimcnp 26885 rlimcxp 26891 chtppilimlem2 27392 dchrisumlem3 27409 |
| Copyright terms: Public domain | W3C validator |