| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimi | Structured version Visualization version GIF version | ||
| Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| rlimi.1 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) |
| rlimi.2 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| rlimi.3 | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
| Ref | Expression |
|---|---|
| rlimi | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5106 | . . . 4 ⊢ (𝑥 = 𝑅 → ((abs‘(𝐵 − 𝐶)) < 𝑥 ↔ (abs‘(𝐵 − 𝐶)) < 𝑅)) | |
| 2 | 1 | imbi2d 340 | . . 3 ⊢ (𝑥 = 𝑅 → ((𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) |
| 3 | 2 | rexralbidv 3201 | . 2 ⊢ (𝑥 = 𝑅 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) |
| 4 | rlimi.3 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
| 5 | rlimf 15443 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → (𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ) |
| 7 | rlimi.1 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) | |
| 8 | eqid 2729 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐴 ↦ 𝐵) = (𝑧 ∈ 𝐴 ↦ 𝐵) | |
| 9 | 8 | fmpt 7064 | . . . . . . . . 9 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑉) |
| 10 | 7, 9 | sylib 218 | . . . . . . . 8 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑉) |
| 11 | 10 | fdmd 6680 | . . . . . . 7 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 12 | 11 | feq2d 6654 | . . . . . 6 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵):dom (𝑧 ∈ 𝐴 ↦ 𝐵)⟶ℂ ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ)) |
| 13 | 6, 12 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 14 | 8 | fmpt 7064 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ ↔ (𝑧 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
| 15 | 13, 14 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) |
| 16 | rlimss 15444 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
| 17 | 4, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
| 18 | 11, 17 | eqsstrrd 3979 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 19 | rlimcl 15445 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ) | |
| 20 | 4, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 21 | 15, 18, 20 | rlim2 15438 | . . 3 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥))) |
| 22 | 4, 21 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑥)) |
| 23 | rlimi.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 24 | 3, 22, 23 | rspcdva 3586 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 class class class wbr 5102 ↦ cmpt 5183 dom cdm 5631 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 < clt 11184 ≤ cle 11185 − cmin 11381 ℝ+crp 12927 abscabs 15176 ⇝𝑟 crli 15427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-pm 8779 df-rlim 15431 |
| This theorem is referenced by: rlimi2 15456 rlimclim1 15487 rlimuni 15492 rlimcld2 15520 rlimcn1 15530 rlimcn3 15532 rlimo1 15559 o1rlimmul 15561 rlimno1 15596 xrlimcnp 26854 rlimcxp 26860 chtppilimlem2 27361 dchrisumlem3 27378 |
| Copyright terms: Public domain | W3C validator |