MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcxp Structured version   Visualization version   GIF version

Theorem rlimcxp 27032
Description: Any power to a positive exponent of a converging sequence also converges. (Contributed by Mario Carneiro, 18-Sep-2014.)
Hypotheses
Ref Expression
rlimcxp.1 ((𝜑𝑛𝐴) → 𝐵𝑉)
rlimcxp.2 (𝜑 → (𝑛𝐴𝐵) ⇝𝑟 0)
rlimcxp.3 (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
rlimcxp (𝜑 → (𝑛𝐴 ↦ (𝐵𝑐𝐶)) ⇝𝑟 0)
Distinct variable groups:   𝐴,𝑛   𝐶,𝑛   𝜑,𝑛
Allowed substitution hints:   𝐵(𝑛)   𝑉(𝑛)

Proof of Theorem rlimcxp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcxp.2 . . . . . . . . 9 (𝜑 → (𝑛𝐴𝐵) ⇝𝑟 0)
2 rlimf 15534 . . . . . . . . 9 ((𝑛𝐴𝐵) ⇝𝑟 0 → (𝑛𝐴𝐵):dom (𝑛𝐴𝐵)⟶ℂ)
31, 2syl 17 . . . . . . . 8 (𝜑 → (𝑛𝐴𝐵):dom (𝑛𝐴𝐵)⟶ℂ)
4 rlimcxp.1 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → 𝐵𝑉)
54ralrimiva 3144 . . . . . . . . . 10 (𝜑 → ∀𝑛𝐴 𝐵𝑉)
6 dmmptg 6264 . . . . . . . . . 10 (∀𝑛𝐴 𝐵𝑉 → dom (𝑛𝐴𝐵) = 𝐴)
75, 6syl 17 . . . . . . . . 9 (𝜑 → dom (𝑛𝐴𝐵) = 𝐴)
87feq2d 6723 . . . . . . . 8 (𝜑 → ((𝑛𝐴𝐵):dom (𝑛𝐴𝐵)⟶ℂ ↔ (𝑛𝐴𝐵):𝐴⟶ℂ))
93, 8mpbid 232 . . . . . . 7 (𝜑 → (𝑛𝐴𝐵):𝐴⟶ℂ)
10 eqid 2735 . . . . . . . 8 (𝑛𝐴𝐵) = (𝑛𝐴𝐵)
1110fmpt 7130 . . . . . . 7 (∀𝑛𝐴 𝐵 ∈ ℂ ↔ (𝑛𝐴𝐵):𝐴⟶ℂ)
129, 11sylibr 234 . . . . . 6 (𝜑 → ∀𝑛𝐴 𝐵 ∈ ℂ)
1312adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛𝐴 𝐵 ∈ ℂ)
14 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
15 rlimcxp.3 . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
1615adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ+)
1716rprecred 13086 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1 / 𝐶) ∈ ℝ)
1814, 17rpcxpcld 26790 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (𝑥𝑐(1 / 𝐶)) ∈ ℝ+)
191adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (𝑛𝐴𝐵) ⇝𝑟 0)
2013, 18, 19rlimi 15546 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑛𝐴 (𝑦𝑛 → (abs‘(𝐵 − 0)) < (𝑥𝑐(1 / 𝐶))))
214, 1rlimmptrcl 15641 . . . . . . . . . . . 12 ((𝜑𝑛𝐴) → 𝐵 ∈ ℂ)
2221adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → 𝐵 ∈ ℂ)
2322abscld 15472 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → (abs‘𝐵) ∈ ℝ)
2422absge0d 15480 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → 0 ≤ (abs‘𝐵))
2518adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → (𝑥𝑐(1 / 𝐶)) ∈ ℝ+)
2625rpred 13075 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → (𝑥𝑐(1 / 𝐶)) ∈ ℝ)
2725rpge0d 13079 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → 0 ≤ (𝑥𝑐(1 / 𝐶)))
2815ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → 𝐶 ∈ ℝ+)
2923, 24, 26, 27, 28cxplt2d 26783 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → ((abs‘𝐵) < (𝑥𝑐(1 / 𝐶)) ↔ ((abs‘𝐵)↑𝑐𝐶) < ((𝑥𝑐(1 / 𝐶))↑𝑐𝐶)))
3022subid1d 11607 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → (𝐵 − 0) = 𝐵)
3130fveq2d 6911 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → (abs‘(𝐵 − 0)) = (abs‘𝐵))
3231breq1d 5158 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → ((abs‘(𝐵 − 0)) < (𝑥𝑐(1 / 𝐶)) ↔ (abs‘𝐵) < (𝑥𝑐(1 / 𝐶))))
3328rpred 13075 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → 𝐶 ∈ ℝ)
34 abscxp2 26750 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (abs‘(𝐵𝑐𝐶)) = ((abs‘𝐵)↑𝑐𝐶))
3522, 33, 34syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → (abs‘(𝐵𝑐𝐶)) = ((abs‘𝐵)↑𝑐𝐶))
3628rpcnd 13077 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → 𝐶 ∈ ℂ)
3728rpne0d 13080 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → 𝐶 ≠ 0)
3836, 37recid2d 12037 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → ((1 / 𝐶) · 𝐶) = 1)
3938oveq2d 7447 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → (𝑥𝑐((1 / 𝐶) · 𝐶)) = (𝑥𝑐1))
40 simplr 769 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → 𝑥 ∈ ℝ+)
4117adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → (1 / 𝐶) ∈ ℝ)
4240, 41, 36cxpmuld 26794 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → (𝑥𝑐((1 / 𝐶) · 𝐶)) = ((𝑥𝑐(1 / 𝐶))↑𝑐𝐶))
4340rpcnd 13077 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → 𝑥 ∈ ℂ)
4443cxp1d 26763 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → (𝑥𝑐1) = 𝑥)
4539, 42, 443eqtr3rd 2784 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → 𝑥 = ((𝑥𝑐(1 / 𝐶))↑𝑐𝐶))
4635, 45breq12d 5161 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → ((abs‘(𝐵𝑐𝐶)) < 𝑥 ↔ ((abs‘𝐵)↑𝑐𝐶) < ((𝑥𝑐(1 / 𝐶))↑𝑐𝐶)))
4729, 32, 463bitr4d 311 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → ((abs‘(𝐵 − 0)) < (𝑥𝑐(1 / 𝐶)) ↔ (abs‘(𝐵𝑐𝐶)) < 𝑥))
4847biimpd 229 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → ((abs‘(𝐵 − 0)) < (𝑥𝑐(1 / 𝐶)) → (abs‘(𝐵𝑐𝐶)) < 𝑥))
4948imim2d 57 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛𝐴) → ((𝑦𝑛 → (abs‘(𝐵 − 0)) < (𝑥𝑐(1 / 𝐶))) → (𝑦𝑛 → (abs‘(𝐵𝑐𝐶)) < 𝑥)))
5049ralimdva 3165 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑛𝐴 (𝑦𝑛 → (abs‘(𝐵 − 0)) < (𝑥𝑐(1 / 𝐶))) → ∀𝑛𝐴 (𝑦𝑛 → (abs‘(𝐵𝑐𝐶)) < 𝑥)))
5150reximdv 3168 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℝ ∀𝑛𝐴 (𝑦𝑛 → (abs‘(𝐵 − 0)) < (𝑥𝑐(1 / 𝐶))) → ∃𝑦 ∈ ℝ ∀𝑛𝐴 (𝑦𝑛 → (abs‘(𝐵𝑐𝐶)) < 𝑥)))
5220, 51mpd 15 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑛𝐴 (𝑦𝑛 → (abs‘(𝐵𝑐𝐶)) < 𝑥))
5352ralrimiva 3144 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛𝐴 (𝑦𝑛 → (abs‘(𝐵𝑐𝐶)) < 𝑥))
5415rpcnd 13077 . . . . . 6 (𝜑𝐶 ∈ ℂ)
5554adantr 480 . . . . 5 ((𝜑𝑛𝐴) → 𝐶 ∈ ℂ)
5621, 55cxpcld 26765 . . . 4 ((𝜑𝑛𝐴) → (𝐵𝑐𝐶) ∈ ℂ)
5756ralrimiva 3144 . . 3 (𝜑 → ∀𝑛𝐴 (𝐵𝑐𝐶) ∈ ℂ)
58 rlimss 15535 . . . . 5 ((𝑛𝐴𝐵) ⇝𝑟 0 → dom (𝑛𝐴𝐵) ⊆ ℝ)
591, 58syl 17 . . . 4 (𝜑 → dom (𝑛𝐴𝐵) ⊆ ℝ)
607, 59eqsstrrd 4035 . . 3 (𝜑𝐴 ⊆ ℝ)
6157, 60rlim0 15541 . 2 (𝜑 → ((𝑛𝐴 ↦ (𝐵𝑐𝐶)) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛𝐴 (𝑦𝑛 → (abs‘(𝐵𝑐𝐶)) < 𝑥)))
6253, 61mpbird 257 1 (𝜑 → (𝑛𝐴 ↦ (𝐵𝑐𝐶)) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wss 3963   class class class wbr 5148  cmpt 5231  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  +crp 13032  abscabs 15270  𝑟 crli 15518  𝑐ccxp 26612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-cxp 26614
This theorem is referenced by:  cxp2lim  27035  cxploglim2  27037
  Copyright terms: Public domain W3C validator