![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngosn6 | Structured version Visualization version GIF version |
Description: Obsolete as of 25-Jan-2020. Use ringen1zr 20673 or srgen1zr 20163 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
on1el3.1 | ⊢ 𝐺 = (1st ‘𝑅) |
on1el3.2 | ⊢ 𝑋 = ran 𝐺 |
on1el3.3 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
rngosn6 | ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on1el3.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | on1el3.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
3 | on1el3.3 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
4 | 1, 2, 3 | rngo0cl 37425 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
5 | 1, 2 | rngosn4 37431 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑍 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩)) |
6 | 4, 5 | mpdan 685 | 1 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 {csn 4632 ⟨cop 4638 class class class wbr 5152 ran crn 5683 ‘cfv 6553 1st c1st 7997 1oc1o 8486 ≈ cen 8967 GIdcgi 30320 RingOpscrngo 37400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-1st 7999 df-2nd 8000 df-1o 8493 df-en 8971 df-grpo 30323 df-gid 30324 df-ablo 30375 df-rngo 37401 |
This theorem is referenced by: dvrunz 37460 |
Copyright terms: Public domain | W3C validator |