Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosn6 Structured version   Visualization version   GIF version

Theorem rngosn6 37896
Description: Obsolete as of 25-Jan-2020. Use ringen1zr 20736 or srgen1zr 20174 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
on1el3.1 𝐺 = (1st𝑅)
on1el3.2 𝑋 = ran 𝐺
on1el3.3 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
rngosn6 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))

Proof of Theorem rngosn6
StepHypRef Expression
1 on1el3.1 . . 3 𝐺 = (1st𝑅)
2 on1el3.2 . . 3 𝑋 = ran 𝐺
3 on1el3.3 . . 3 𝑍 = (GId‘𝐺)
41, 2, 3rngo0cl 37889 . 2 (𝑅 ∈ RingOps → 𝑍𝑋)
51, 2rngosn4 37895 . 2 ((𝑅 ∈ RingOps ∧ 𝑍𝑋) → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
64, 5mpdan 687 1 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  {csn 4601  cop 4607   class class class wbr 5119  ran crn 5655  cfv 6530  1st c1st 7984  1oc1o 8471  cen 8954  GIdcgi 30417  RingOpscrngo 37864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-1st 7986  df-2nd 7987  df-1o 8478  df-en 8958  df-grpo 30420  df-gid 30421  df-ablo 30472  df-rngo 37865
This theorem is referenced by:  dvrunz  37924
  Copyright terms: Public domain W3C validator