| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngosn6 | Structured version Visualization version GIF version | ||
| Description: Obsolete as of 25-Jan-2020. Use ringen1zr 20699 or srgen1zr 20140 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| on1el3.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| on1el3.2 | ⊢ 𝑋 = ran 𝐺 |
| on1el3.3 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| rngosn6 | ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on1el3.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | on1el3.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 3 | on1el3.3 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
| 4 | 1, 2, 3 | rngo0cl 37965 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
| 5 | 1, 2 | rngosn4 37971 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑍 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| 6 | 4, 5 | mpdan 687 | 1 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {csn 4575 〈cop 4581 class class class wbr 5093 ran crn 5620 ‘cfv 6487 1st c1st 7925 1oc1o 8384 ≈ cen 8872 GIdcgi 30477 RingOpscrngo 37940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-1st 7927 df-2nd 7928 df-1o 8391 df-en 8876 df-grpo 30480 df-gid 30481 df-ablo 30532 df-rngo 37941 |
| This theorem is referenced by: dvrunz 38000 |
| Copyright terms: Public domain | W3C validator |