| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngosn6 | Structured version Visualization version GIF version | ||
| Description: Obsolete as of 25-Jan-2020. Use ringen1zr 20694 or srgen1zr 20132 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| on1el3.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| on1el3.2 | ⊢ 𝑋 = ran 𝐺 |
| on1el3.3 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| rngosn6 | ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on1el3.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | on1el3.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 3 | on1el3.3 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
| 4 | 1, 2, 3 | rngo0cl 37920 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
| 5 | 1, 2 | rngosn4 37926 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑍 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| 6 | 4, 5 | mpdan 687 | 1 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4592 〈cop 4598 class class class wbr 5110 ran crn 5642 ‘cfv 6514 1st c1st 7969 1oc1o 8430 ≈ cen 8918 GIdcgi 30426 RingOpscrngo 37895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-1st 7971 df-2nd 7972 df-1o 8437 df-en 8922 df-grpo 30429 df-gid 30430 df-ablo 30481 df-rngo 37896 |
| This theorem is referenced by: dvrunz 37955 |
| Copyright terms: Public domain | W3C validator |