| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngosn6 | Structured version Visualization version GIF version | ||
| Description: Obsolete as of 25-Jan-2020. Use ringen1zr 20736 or srgen1zr 20174 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| on1el3.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| on1el3.2 | ⊢ 𝑋 = ran 𝐺 |
| on1el3.3 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| rngosn6 | ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on1el3.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | on1el3.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 3 | on1el3.3 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
| 4 | 1, 2, 3 | rngo0cl 37889 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
| 5 | 1, 2 | rngosn4 37895 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑍 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| 6 | 4, 5 | mpdan 687 | 1 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {csn 4601 〈cop 4607 class class class wbr 5119 ran crn 5655 ‘cfv 6530 1st c1st 7984 1oc1o 8471 ≈ cen 8954 GIdcgi 30417 RingOpscrngo 37864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-1st 7986 df-2nd 7987 df-1o 8478 df-en 8958 df-grpo 30420 df-gid 30421 df-ablo 30472 df-rngo 37865 |
| This theorem is referenced by: dvrunz 37924 |
| Copyright terms: Public domain | W3C validator |