Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosn6 Structured version   Visualization version   GIF version

Theorem rngosn6 37886
Description: Obsolete as of 25-Jan-2020. Use ringen1zr 20801 or srgen1zr 20243 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
on1el3.1 𝐺 = (1st𝑅)
on1el3.2 𝑋 = ran 𝐺
on1el3.3 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
rngosn6 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))

Proof of Theorem rngosn6
StepHypRef Expression
1 on1el3.1 . . 3 𝐺 = (1st𝑅)
2 on1el3.2 . . 3 𝑋 = ran 𝐺
3 on1el3.3 . . 3 𝑍 = (GId‘𝐺)
41, 2, 3rngo0cl 37879 . 2 (𝑅 ∈ RingOps → 𝑍𝑋)
51, 2rngosn4 37885 . 2 ((𝑅 ∈ RingOps ∧ 𝑍𝑋) → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
64, 5mpdan 686 1 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {csn 4648  cop 4654   class class class wbr 5166  ran crn 5701  cfv 6573  1st c1st 8028  1oc1o 8515  cen 9000  GIdcgi 30522  RingOpscrngo 37854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-1st 8030  df-2nd 8031  df-1o 8522  df-en 9004  df-grpo 30525  df-gid 30526  df-ablo 30577  df-rngo 37855
This theorem is referenced by:  dvrunz  37914
  Copyright terms: Public domain W3C validator