Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosn6 Structured version   Visualization version   GIF version

Theorem rngosn6 37912
Description: Obsolete as of 25-Jan-2020. Use ringen1zr 20795 or srgen1zr 20233 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
on1el3.1 𝐺 = (1st𝑅)
on1el3.2 𝑋 = ran 𝐺
on1el3.3 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
rngosn6 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))

Proof of Theorem rngosn6
StepHypRef Expression
1 on1el3.1 . . 3 𝐺 = (1st𝑅)
2 on1el3.2 . . 3 𝑋 = ran 𝐺
3 on1el3.3 . . 3 𝑍 = (GId‘𝐺)
41, 2, 3rngo0cl 37905 . 2 (𝑅 ∈ RingOps → 𝑍𝑋)
51, 2rngosn4 37911 . 2 ((𝑅 ∈ RingOps ∧ 𝑍𝑋) → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
64, 5mpdan 687 1 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1536  wcel 2105  {csn 4630  cop 4636   class class class wbr 5147  ran crn 5689  cfv 6562  1st c1st 8010  1oc1o 8497  cen 8980  GIdcgi 30518  RingOpscrngo 37880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-1st 8012  df-2nd 8013  df-1o 8504  df-en 8984  df-grpo 30521  df-gid 30522  df-ablo 30573  df-rngo 37881
This theorem is referenced by:  dvrunz  37940
  Copyright terms: Public domain W3C validator