MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem1 Structured version   Visualization version   GIF version

Theorem ftalem1 27040
Description: Lemma for fta 27047: "growth lemma". There exists some 𝑟 such that 𝐹 is arbitrarily close in proportion to its dominant term. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem1.5 (𝜑𝐸 ∈ ℝ+)
ftalem1.6 𝑇 = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸)
Assertion
Ref Expression
ftalem1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
Distinct variable groups:   𝑘,𝑟,𝑥,𝐴   𝐸,𝑟   𝑘,𝑁,𝑟,𝑥   𝑘,𝐹,𝑟,𝑥   𝜑,𝑘,𝑥   𝑆,𝑘   𝑇,𝑘,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑟)   𝑆(𝑥,𝑟)   𝐸(𝑥,𝑘)

Proof of Theorem ftalem1
StepHypRef Expression
1 ftalem1.6 . . . 4 𝑇 = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸)
2 fzfid 13996 . . . . . 6 (𝜑 → (0...(𝑁 − 1)) ∈ Fin)
3 ftalem.3 . . . . . . . . 9 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.1 . . . . . . . . . 10 𝐴 = (coeff‘𝐹)
54coef3 26194 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
63, 5syl 17 . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
7 elfznn0 13642 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
8 ffvelcdm 7076 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
96, 7, 8syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴𝑘) ∈ ℂ)
109abscld 15460 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴𝑘)) ∈ ℝ)
112, 10fsumrecl 15755 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) ∈ ℝ)
12 ftalem1.5 . . . . 5 (𝜑𝐸 ∈ ℝ+)
1311, 12rerpdivcld 13087 . . . 4 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸) ∈ ℝ)
141, 13eqeltrid 2839 . . 3 (𝜑𝑇 ∈ ℝ)
15 1re 11240 . . 3 1 ∈ ℝ
16 ifcl 4551 . . 3 ((𝑇 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ)
1714, 15, 16sylancl 586 . 2 (𝜑 → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ)
18 fzfid 13996 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (0...(𝑁 − 1)) ∈ Fin)
196adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐴:ℕ0⟶ℂ)
2019, 8sylan 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
21 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑥 ∈ ℂ)
22 expcl 14102 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
2321, 22sylan 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
2420, 23mulcld 11260 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
257, 24sylan2 593 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
2618, 25fsumcl 15754 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
27 ftalem.4 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
2827nnnn0d 12567 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
2928adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ ℕ0)
3019, 29ffvelcdmd 7080 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐴𝑁) ∈ ℂ)
3121, 29expcld 14169 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑥𝑁) ∈ ℂ)
3230, 31mulcld 11260 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐴𝑁) · (𝑥𝑁)) ∈ ℂ)
333adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐹 ∈ (Poly‘𝑆))
34 ftalem.2 . . . . . . . . . 10 𝑁 = (deg‘𝐹)
354, 34coeid2 26201 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (𝐹𝑥) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))
3633, 21, 35syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐹𝑥) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))
37 nn0uz 12899 . . . . . . . . . 10 0 = (ℤ‘0)
3829, 37eleqtrdi 2845 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ (ℤ‘0))
39 elfznn0 13642 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
4039, 24sylan2 593 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
41 fveq2 6881 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝐴𝑘) = (𝐴𝑁))
42 oveq2 7418 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝑥𝑘) = (𝑥𝑁))
4341, 42oveq12d 7428 . . . . . . . . 9 (𝑘 = 𝑁 → ((𝐴𝑘) · (𝑥𝑘)) = ((𝐴𝑁) · (𝑥𝑁)))
4438, 40, 43fsumm1 15772 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)) + ((𝐴𝑁) · (𝑥𝑁))))
4536, 44eqtrd 2771 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐹𝑥) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)) + ((𝐴𝑁) · (𝑥𝑁))))
4626, 32, 45mvrraddd 11654 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)))
4746fveq2d 6885 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) = (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))))
4826abscld 15460 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))) ∈ ℝ)
4925abscld 15460 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴𝑘) · (𝑥𝑘))) ∈ ℝ)
5018, 49fsumrecl 15755 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) ∈ ℝ)
5112adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℝ+)
5251rpred 13056 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℝ)
5321abscld 15460 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘𝑥) ∈ ℝ)
5453, 29reexpcld 14186 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℝ)
5552, 54remulcld 11270 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) ∈ ℝ)
5618, 25fsumabs 15822 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))) ≤ Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))))
5711adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) ∈ ℝ)
5827adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ ℕ)
59 nnm1nn0 12547 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
6058, 59syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑁 − 1) ∈ ℕ0)
6153, 60reexpcld 14186 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ)
6257, 61remulcld 11270 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) ∈ ℝ)
6310adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴𝑘)) ∈ ℝ)
6461adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ)
6563, 64remulcld 11270 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) ∈ ℝ)
6620, 23absmuld 15478 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) · (𝑥𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑥𝑘))))
677, 66sylan2 593 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴𝑘) · (𝑥𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑥𝑘))))
687, 23sylan2 593 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑥𝑘) ∈ ℂ)
6968abscld 15460 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥𝑘)) ∈ ℝ)
707, 20sylan2 593 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴𝑘) ∈ ℂ)
7170absge0d 15468 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 0 ≤ (abs‘(𝐴𝑘)))
72 absexp 15328 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝑥𝑘)) = ((abs‘𝑥)↑𝑘))
7321, 7, 72syl2an 596 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥𝑘)) = ((abs‘𝑥)↑𝑘))
7453adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘𝑥) ∈ ℝ)
7515a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ∈ ℝ)
7617adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ)
77 max1 13206 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1))
7815, 14, 77sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1))
7978adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1))
80 simprr 772 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))
8175, 76, 53, 79, 80lelttrd 11398 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 < (abs‘𝑥))
8275, 53, 81ltled 11388 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ≤ (abs‘𝑥))
8382adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 1 ≤ (abs‘𝑥))
84 elfzuz3 13543 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑘))
8584adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ (ℤ𝑘))
8674, 83, 85leexp2ad 14277 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘𝑥)↑𝑘) ≤ ((abs‘𝑥)↑(𝑁 − 1)))
8773, 86eqbrtrd 5146 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥𝑘)) ≤ ((abs‘𝑥)↑(𝑁 − 1)))
8869, 64, 63, 71, 87lemul2ad 12187 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘(𝐴𝑘)) · (abs‘(𝑥𝑘))) ≤ ((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
8967, 88eqbrtrd 5146 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴𝑘) · (𝑥𝑘))) ≤ ((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9018, 49, 65, 89fsumle 15820 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) ≤ Σ𝑘 ∈ (0...(𝑁 − 1))((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9161recnd 11268 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
9263recnd 11268 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴𝑘)) ∈ ℂ)
9318, 91, 92fsummulc1 15806 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9490, 93breqtrrd 5152 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) ≤ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9514adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 ∈ ℝ)
96 max2 13208 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → 𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1))
9715, 14, 96sylancr 587 . . . . . . . . . . . . 13 (𝜑𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1))
9897adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1))
9995, 76, 53, 98, 80lelttrd 11398 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 < (abs‘𝑥))
1001, 99eqbrtrrid 5160 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸) < (abs‘𝑥))
10157, 53, 51ltdivmuld 13107 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸) < (abs‘𝑥) ↔ Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥))))
102100, 101mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥)))
10352, 53remulcld 11270 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · (abs‘𝑥)) ∈ ℝ)
10460nn0zd 12619 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑁 − 1) ∈ ℤ)
105 0red 11243 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 ∈ ℝ)
106 0lt1 11764 . . . . . . . . . . . . 13 0 < 1
107106a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < 1)
108105, 75, 53, 107, 81lttrd 11401 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < (abs‘𝑥))
109 expgt0 14118 . . . . . . . . . . 11 (((abs‘𝑥) ∈ ℝ ∧ (𝑁 − 1) ∈ ℤ ∧ 0 < (abs‘𝑥)) → 0 < ((abs‘𝑥)↑(𝑁 − 1)))
11053, 104, 108, 109syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < ((abs‘𝑥)↑(𝑁 − 1)))
111 ltmul1 12096 . . . . . . . . . 10 ((Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) ∈ ℝ ∧ (𝐸 · (abs‘𝑥)) ∈ ℝ ∧ (((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ ∧ 0 < ((abs‘𝑥)↑(𝑁 − 1)))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥)) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1)))))
11257, 103, 61, 110, 111syl112anc 1376 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥)) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1)))))
113102, 112mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))))
11453recnd 11268 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘𝑥) ∈ ℂ)
115 expm1t 14113 . . . . . . . . . . . 12 (((abs‘𝑥) ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((abs‘𝑥)↑𝑁) = (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)))
116114, 58, 115syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) = (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)))
11791, 114mulcomd 11261 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)) = ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1))))
118116, 117eqtrd 2771 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) = ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1))))
119118oveq2d 7426 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) = (𝐸 · ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1)))))
12052recnd 11268 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℂ)
121120, 114, 91mulassd 11263 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))) = (𝐸 · ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1)))))
122119, 121eqtr4d 2774 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) = ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))))
123113, 122breqtrrd 5152 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
12450, 62, 55, 94, 123lelttrd 11398 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
12548, 50, 55, 56, 124lelttrd 11398 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
12647, 125eqbrtrd 5146 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
127126expr 456 . . 3 ((𝜑𝑥 ∈ ℂ) → (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
128127ralrimiva 3133 . 2 (𝜑 → ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
129 breq1 5127 . . 3 (𝑟 = if(1 ≤ 𝑇, 𝑇, 1) → (𝑟 < (abs‘𝑥) ↔ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥)))
130129rspceaimv 3612 . 2 ((if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ ∧ ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
13117, 128, 130syl2anc 584 1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  ifcif 4505   class class class wbr 5124  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  0cn0 12506  cz 12593  cuz 12857  +crp 13013  ...cfz 13529  cexp 14084  abscabs 15258  Σcsu 15707  Polycply 26146  coeffccoe 26148  degcdgr 26149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ico 13373  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-0p 25628  df-ply 26150  df-coe 26152  df-dgr 26153
This theorem is referenced by:  ftalem2  27041
  Copyright terms: Public domain W3C validator