MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem1 Structured version   Visualization version   GIF version

Theorem ftalem1 26983
Description: Lemma for fta 26990: "growth lemma". There exists some 𝑟 such that 𝐹 is arbitrarily close in proportion to its dominant term. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem1.5 (𝜑𝐸 ∈ ℝ+)
ftalem1.6 𝑇 = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸)
Assertion
Ref Expression
ftalem1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
Distinct variable groups:   𝑘,𝑟,𝑥,𝐴   𝐸,𝑟   𝑘,𝑁,𝑟,𝑥   𝑘,𝐹,𝑟,𝑥   𝜑,𝑘,𝑥   𝑆,𝑘   𝑇,𝑘,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑟)   𝑆(𝑥,𝑟)   𝐸(𝑥,𝑘)

Proof of Theorem ftalem1
StepHypRef Expression
1 ftalem1.6 . . . 4 𝑇 = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸)
2 fzfid 13938 . . . . . 6 (𝜑 → (0...(𝑁 − 1)) ∈ Fin)
3 ftalem.3 . . . . . . . . 9 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.1 . . . . . . . . . 10 𝐴 = (coeff‘𝐹)
54coef3 26137 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
63, 5syl 17 . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
7 elfznn0 13581 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
8 ffvelcdm 7053 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
96, 7, 8syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴𝑘) ∈ ℂ)
109abscld 15405 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴𝑘)) ∈ ℝ)
112, 10fsumrecl 15700 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) ∈ ℝ)
12 ftalem1.5 . . . . 5 (𝜑𝐸 ∈ ℝ+)
1311, 12rerpdivcld 13026 . . . 4 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸) ∈ ℝ)
141, 13eqeltrid 2832 . . 3 (𝜑𝑇 ∈ ℝ)
15 1re 11174 . . 3 1 ∈ ℝ
16 ifcl 4534 . . 3 ((𝑇 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ)
1714, 15, 16sylancl 586 . 2 (𝜑 → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ)
18 fzfid 13938 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (0...(𝑁 − 1)) ∈ Fin)
196adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐴:ℕ0⟶ℂ)
2019, 8sylan 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
21 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑥 ∈ ℂ)
22 expcl 14044 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
2321, 22sylan 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
2420, 23mulcld 11194 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
257, 24sylan2 593 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
2618, 25fsumcl 15699 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
27 ftalem.4 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
2827nnnn0d 12503 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
2928adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ ℕ0)
3019, 29ffvelcdmd 7057 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐴𝑁) ∈ ℂ)
3121, 29expcld 14111 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑥𝑁) ∈ ℂ)
3230, 31mulcld 11194 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐴𝑁) · (𝑥𝑁)) ∈ ℂ)
333adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐹 ∈ (Poly‘𝑆))
34 ftalem.2 . . . . . . . . . 10 𝑁 = (deg‘𝐹)
354, 34coeid2 26144 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (𝐹𝑥) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))
3633, 21, 35syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐹𝑥) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))
37 nn0uz 12835 . . . . . . . . . 10 0 = (ℤ‘0)
3829, 37eleqtrdi 2838 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ (ℤ‘0))
39 elfznn0 13581 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
4039, 24sylan2 593 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
41 fveq2 6858 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝐴𝑘) = (𝐴𝑁))
42 oveq2 7395 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝑥𝑘) = (𝑥𝑁))
4341, 42oveq12d 7405 . . . . . . . . 9 (𝑘 = 𝑁 → ((𝐴𝑘) · (𝑥𝑘)) = ((𝐴𝑁) · (𝑥𝑁)))
4438, 40, 43fsumm1 15717 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)) + ((𝐴𝑁) · (𝑥𝑁))))
4536, 44eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐹𝑥) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)) + ((𝐴𝑁) · (𝑥𝑁))))
4626, 32, 45mvrraddd 11590 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)))
4746fveq2d 6862 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) = (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))))
4826abscld 15405 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))) ∈ ℝ)
4925abscld 15405 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴𝑘) · (𝑥𝑘))) ∈ ℝ)
5018, 49fsumrecl 15700 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) ∈ ℝ)
5112adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℝ+)
5251rpred 12995 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℝ)
5321abscld 15405 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘𝑥) ∈ ℝ)
5453, 29reexpcld 14128 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℝ)
5552, 54remulcld 11204 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) ∈ ℝ)
5618, 25fsumabs 15767 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))) ≤ Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))))
5711adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) ∈ ℝ)
5827adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ ℕ)
59 nnm1nn0 12483 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
6058, 59syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑁 − 1) ∈ ℕ0)
6153, 60reexpcld 14128 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ)
6257, 61remulcld 11204 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) ∈ ℝ)
6310adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴𝑘)) ∈ ℝ)
6461adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ)
6563, 64remulcld 11204 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) ∈ ℝ)
6620, 23absmuld 15423 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) · (𝑥𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑥𝑘))))
677, 66sylan2 593 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴𝑘) · (𝑥𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑥𝑘))))
687, 23sylan2 593 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑥𝑘) ∈ ℂ)
6968abscld 15405 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥𝑘)) ∈ ℝ)
707, 20sylan2 593 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴𝑘) ∈ ℂ)
7170absge0d 15413 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 0 ≤ (abs‘(𝐴𝑘)))
72 absexp 15270 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝑥𝑘)) = ((abs‘𝑥)↑𝑘))
7321, 7, 72syl2an 596 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥𝑘)) = ((abs‘𝑥)↑𝑘))
7453adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘𝑥) ∈ ℝ)
7515a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ∈ ℝ)
7617adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ)
77 max1 13145 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1))
7815, 14, 77sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1))
7978adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1))
80 simprr 772 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))
8175, 76, 53, 79, 80lelttrd 11332 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 < (abs‘𝑥))
8275, 53, 81ltled 11322 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ≤ (abs‘𝑥))
8382adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 1 ≤ (abs‘𝑥))
84 elfzuz3 13482 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑘))
8584adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ (ℤ𝑘))
8674, 83, 85leexp2ad 14219 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘𝑥)↑𝑘) ≤ ((abs‘𝑥)↑(𝑁 − 1)))
8773, 86eqbrtrd 5129 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥𝑘)) ≤ ((abs‘𝑥)↑(𝑁 − 1)))
8869, 64, 63, 71, 87lemul2ad 12123 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘(𝐴𝑘)) · (abs‘(𝑥𝑘))) ≤ ((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
8967, 88eqbrtrd 5129 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴𝑘) · (𝑥𝑘))) ≤ ((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9018, 49, 65, 89fsumle 15765 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) ≤ Σ𝑘 ∈ (0...(𝑁 − 1))((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9161recnd 11202 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
9263recnd 11202 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴𝑘)) ∈ ℂ)
9318, 91, 92fsummulc1 15751 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9490, 93breqtrrd 5135 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) ≤ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9514adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 ∈ ℝ)
96 max2 13147 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → 𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1))
9715, 14, 96sylancr 587 . . . . . . . . . . . . 13 (𝜑𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1))
9897adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1))
9995, 76, 53, 98, 80lelttrd 11332 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 < (abs‘𝑥))
1001, 99eqbrtrrid 5143 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸) < (abs‘𝑥))
10157, 53, 51ltdivmuld 13046 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸) < (abs‘𝑥) ↔ Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥))))
102100, 101mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥)))
10352, 53remulcld 11204 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · (abs‘𝑥)) ∈ ℝ)
10460nn0zd 12555 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑁 − 1) ∈ ℤ)
105 0red 11177 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 ∈ ℝ)
106 0lt1 11700 . . . . . . . . . . . . 13 0 < 1
107106a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < 1)
108105, 75, 53, 107, 81lttrd 11335 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < (abs‘𝑥))
109 expgt0 14060 . . . . . . . . . . 11 (((abs‘𝑥) ∈ ℝ ∧ (𝑁 − 1) ∈ ℤ ∧ 0 < (abs‘𝑥)) → 0 < ((abs‘𝑥)↑(𝑁 − 1)))
11053, 104, 108, 109syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < ((abs‘𝑥)↑(𝑁 − 1)))
111 ltmul1 12032 . . . . . . . . . 10 ((Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) ∈ ℝ ∧ (𝐸 · (abs‘𝑥)) ∈ ℝ ∧ (((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ ∧ 0 < ((abs‘𝑥)↑(𝑁 − 1)))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥)) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1)))))
11257, 103, 61, 110, 111syl112anc 1376 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥)) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1)))))
113102, 112mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))))
11453recnd 11202 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘𝑥) ∈ ℂ)
115 expm1t 14055 . . . . . . . . . . . 12 (((abs‘𝑥) ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((abs‘𝑥)↑𝑁) = (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)))
116114, 58, 115syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) = (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)))
11791, 114mulcomd 11195 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)) = ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1))))
118116, 117eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) = ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1))))
119118oveq2d 7403 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) = (𝐸 · ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1)))))
12052recnd 11202 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℂ)
121120, 114, 91mulassd 11197 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))) = (𝐸 · ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1)))))
122119, 121eqtr4d 2767 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) = ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))))
123113, 122breqtrrd 5135 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
12450, 62, 55, 94, 123lelttrd 11332 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
12548, 50, 55, 56, 124lelttrd 11332 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
12647, 125eqbrtrd 5129 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
127126expr 456 . . 3 ((𝜑𝑥 ∈ ℂ) → (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
128127ralrimiva 3125 . 2 (𝜑 → ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
129 breq1 5110 . . 3 (𝑟 = if(1 ≤ 𝑇, 𝑇, 1) → (𝑟 < (abs‘𝑥) ↔ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥)))
130129rspceaimv 3594 . 2 ((if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ ∧ ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
13117, 128, 130syl2anc 584 1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ifcif 4488   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  cuz 12793  +crp 12951  ...cfz 13468  cexp 14026  abscabs 15200  Σcsu 15652  Polycply 26089  coeffccoe 26091  degcdgr 26092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-0p 25571  df-ply 26093  df-coe 26095  df-dgr 26096
This theorem is referenced by:  ftalem2  26984
  Copyright terms: Public domain W3C validator