MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem1 Structured version   Visualization version   GIF version

Theorem ftalem1 26959
Description: Lemma for fta 26966: "growth lemma". There exists some 𝑟 such that 𝐹 is arbitrarily close in proportion to its dominant term. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem1.5 (𝜑𝐸 ∈ ℝ+)
ftalem1.6 𝑇 = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸)
Assertion
Ref Expression
ftalem1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
Distinct variable groups:   𝑘,𝑟,𝑥,𝐴   𝐸,𝑟   𝑘,𝑁,𝑟,𝑥   𝑘,𝐹,𝑟,𝑥   𝜑,𝑘,𝑥   𝑆,𝑘   𝑇,𝑘,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑟)   𝑆(𝑥,𝑟)   𝐸(𝑥,𝑘)

Proof of Theorem ftalem1
StepHypRef Expression
1 ftalem1.6 . . . 4 𝑇 = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸)
2 fzfid 13914 . . . . . 6 (𝜑 → (0...(𝑁 − 1)) ∈ Fin)
3 ftalem.3 . . . . . . . . 9 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.1 . . . . . . . . . 10 𝐴 = (coeff‘𝐹)
54coef3 26113 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
63, 5syl 17 . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
7 elfznn0 13557 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
8 ffvelcdm 7035 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
96, 7, 8syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴𝑘) ∈ ℂ)
109abscld 15381 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴𝑘)) ∈ ℝ)
112, 10fsumrecl 15676 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) ∈ ℝ)
12 ftalem1.5 . . . . 5 (𝜑𝐸 ∈ ℝ+)
1311, 12rerpdivcld 13002 . . . 4 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸) ∈ ℝ)
141, 13eqeltrid 2832 . . 3 (𝜑𝑇 ∈ ℝ)
15 1re 11150 . . 3 1 ∈ ℝ
16 ifcl 4530 . . 3 ((𝑇 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ)
1714, 15, 16sylancl 586 . 2 (𝜑 → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ)
18 fzfid 13914 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (0...(𝑁 − 1)) ∈ Fin)
196adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐴:ℕ0⟶ℂ)
2019, 8sylan 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
21 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑥 ∈ ℂ)
22 expcl 14020 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
2321, 22sylan 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
2420, 23mulcld 11170 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
257, 24sylan2 593 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
2618, 25fsumcl 15675 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
27 ftalem.4 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
2827nnnn0d 12479 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
2928adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ ℕ0)
3019, 29ffvelcdmd 7039 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐴𝑁) ∈ ℂ)
3121, 29expcld 14087 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑥𝑁) ∈ ℂ)
3230, 31mulcld 11170 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐴𝑁) · (𝑥𝑁)) ∈ ℂ)
333adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐹 ∈ (Poly‘𝑆))
34 ftalem.2 . . . . . . . . . 10 𝑁 = (deg‘𝐹)
354, 34coeid2 26120 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (𝐹𝑥) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))
3633, 21, 35syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐹𝑥) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))
37 nn0uz 12811 . . . . . . . . . 10 0 = (ℤ‘0)
3829, 37eleqtrdi 2838 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ (ℤ‘0))
39 elfznn0 13557 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
4039, 24sylan2 593 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
41 fveq2 6840 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝐴𝑘) = (𝐴𝑁))
42 oveq2 7377 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝑥𝑘) = (𝑥𝑁))
4341, 42oveq12d 7387 . . . . . . . . 9 (𝑘 = 𝑁 → ((𝐴𝑘) · (𝑥𝑘)) = ((𝐴𝑁) · (𝑥𝑁)))
4438, 40, 43fsumm1 15693 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)) + ((𝐴𝑁) · (𝑥𝑁))))
4536, 44eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐹𝑥) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)) + ((𝐴𝑁) · (𝑥𝑁))))
4626, 32, 45mvrraddd 11566 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)))
4746fveq2d 6844 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) = (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))))
4826abscld 15381 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))) ∈ ℝ)
4925abscld 15381 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴𝑘) · (𝑥𝑘))) ∈ ℝ)
5018, 49fsumrecl 15676 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) ∈ ℝ)
5112adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℝ+)
5251rpred 12971 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℝ)
5321abscld 15381 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘𝑥) ∈ ℝ)
5453, 29reexpcld 14104 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℝ)
5552, 54remulcld 11180 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) ∈ ℝ)
5618, 25fsumabs 15743 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))) ≤ Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))))
5711adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) ∈ ℝ)
5827adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ ℕ)
59 nnm1nn0 12459 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
6058, 59syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑁 − 1) ∈ ℕ0)
6153, 60reexpcld 14104 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ)
6257, 61remulcld 11180 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) ∈ ℝ)
6310adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴𝑘)) ∈ ℝ)
6461adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ)
6563, 64remulcld 11180 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) ∈ ℝ)
6620, 23absmuld 15399 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) · (𝑥𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑥𝑘))))
677, 66sylan2 593 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴𝑘) · (𝑥𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑥𝑘))))
687, 23sylan2 593 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑥𝑘) ∈ ℂ)
6968abscld 15381 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥𝑘)) ∈ ℝ)
707, 20sylan2 593 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴𝑘) ∈ ℂ)
7170absge0d 15389 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 0 ≤ (abs‘(𝐴𝑘)))
72 absexp 15246 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝑥𝑘)) = ((abs‘𝑥)↑𝑘))
7321, 7, 72syl2an 596 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥𝑘)) = ((abs‘𝑥)↑𝑘))
7453adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘𝑥) ∈ ℝ)
7515a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ∈ ℝ)
7617adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ)
77 max1 13121 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1))
7815, 14, 77sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1))
7978adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1))
80 simprr 772 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))
8175, 76, 53, 79, 80lelttrd 11308 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 < (abs‘𝑥))
8275, 53, 81ltled 11298 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ≤ (abs‘𝑥))
8382adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 1 ≤ (abs‘𝑥))
84 elfzuz3 13458 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑘))
8584adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ (ℤ𝑘))
8674, 83, 85leexp2ad 14195 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘𝑥)↑𝑘) ≤ ((abs‘𝑥)↑(𝑁 − 1)))
8773, 86eqbrtrd 5124 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥𝑘)) ≤ ((abs‘𝑥)↑(𝑁 − 1)))
8869, 64, 63, 71, 87lemul2ad 12099 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘(𝐴𝑘)) · (abs‘(𝑥𝑘))) ≤ ((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
8967, 88eqbrtrd 5124 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴𝑘) · (𝑥𝑘))) ≤ ((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9018, 49, 65, 89fsumle 15741 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) ≤ Σ𝑘 ∈ (0...(𝑁 − 1))((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9161recnd 11178 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
9263recnd 11178 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴𝑘)) ∈ ℂ)
9318, 91, 92fsummulc1 15727 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9490, 93breqtrrd 5130 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) ≤ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9514adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 ∈ ℝ)
96 max2 13123 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → 𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1))
9715, 14, 96sylancr 587 . . . . . . . . . . . . 13 (𝜑𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1))
9897adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1))
9995, 76, 53, 98, 80lelttrd 11308 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 < (abs‘𝑥))
1001, 99eqbrtrrid 5138 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸) < (abs‘𝑥))
10157, 53, 51ltdivmuld 13022 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸) < (abs‘𝑥) ↔ Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥))))
102100, 101mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥)))
10352, 53remulcld 11180 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · (abs‘𝑥)) ∈ ℝ)
10460nn0zd 12531 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑁 − 1) ∈ ℤ)
105 0red 11153 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 ∈ ℝ)
106 0lt1 11676 . . . . . . . . . . . . 13 0 < 1
107106a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < 1)
108105, 75, 53, 107, 81lttrd 11311 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < (abs‘𝑥))
109 expgt0 14036 . . . . . . . . . . 11 (((abs‘𝑥) ∈ ℝ ∧ (𝑁 − 1) ∈ ℤ ∧ 0 < (abs‘𝑥)) → 0 < ((abs‘𝑥)↑(𝑁 − 1)))
11053, 104, 108, 109syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < ((abs‘𝑥)↑(𝑁 − 1)))
111 ltmul1 12008 . . . . . . . . . 10 ((Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) ∈ ℝ ∧ (𝐸 · (abs‘𝑥)) ∈ ℝ ∧ (((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ ∧ 0 < ((abs‘𝑥)↑(𝑁 − 1)))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥)) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1)))))
11257, 103, 61, 110, 111syl112anc 1376 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥)) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1)))))
113102, 112mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))))
11453recnd 11178 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘𝑥) ∈ ℂ)
115 expm1t 14031 . . . . . . . . . . . 12 (((abs‘𝑥) ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((abs‘𝑥)↑𝑁) = (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)))
116114, 58, 115syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) = (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)))
11791, 114mulcomd 11171 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)) = ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1))))
118116, 117eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) = ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1))))
119118oveq2d 7385 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) = (𝐸 · ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1)))))
12052recnd 11178 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℂ)
121120, 114, 91mulassd 11173 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))) = (𝐸 · ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1)))))
122119, 121eqtr4d 2767 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) = ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))))
123113, 122breqtrrd 5130 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
12450, 62, 55, 94, 123lelttrd 11308 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
12548, 50, 55, 56, 124lelttrd 11308 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
12647, 125eqbrtrd 5124 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
127126expr 456 . . 3 ((𝜑𝑥 ∈ ℂ) → (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
128127ralrimiva 3125 . 2 (𝜑 → ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
129 breq1 5105 . . 3 (𝑟 = if(1 ≤ 𝑇, 𝑇, 1) → (𝑟 < (abs‘𝑥) ↔ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥)))
130129rspceaimv 3591 . 2 ((if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ ∧ ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
13117, 128, 130syl2anc 584 1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ifcif 4484   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  cuz 12769  +crp 12927  ...cfz 13444  cexp 14002  abscabs 15176  Σcsu 15628  Polycply 26065  coeffccoe 26067  degcdgr 26068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-0p 25547  df-ply 26069  df-coe 26071  df-dgr 26072
This theorem is referenced by:  ftalem2  26960
  Copyright terms: Public domain W3C validator