Proof of Theorem ftalem1
| Step | Hyp | Ref
| Expression |
| 1 | | ftalem1.6 |
. . . 4
⊢ 𝑇 = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) |
| 2 | | fzfid 13997 |
. . . . . 6
⊢ (𝜑 → (0...(𝑁 − 1)) ∈ Fin) |
| 3 | | ftalem.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| 4 | | ftalem.1 |
. . . . . . . . . 10
⊢ 𝐴 = (coeff‘𝐹) |
| 5 | 4 | coef3 26226 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
| 6 | 3, 5 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 7 | | elfznn0 13643 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) |
| 8 | | ffvelcdm 7082 |
. . . . . . . 8
⊢ ((𝐴:ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 9 | 6, 7, 8 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴‘𝑘) ∈ ℂ) |
| 10 | 9 | abscld 15458 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴‘𝑘)) ∈ ℝ) |
| 11 | 2, 10 | fsumrecl 15753 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) ∈ ℝ) |
| 12 | | ftalem1.5 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 13 | 11, 12 | rerpdivcld 13091 |
. . . 4
⊢ (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) ∈ ℝ) |
| 14 | 1, 13 | eqeltrid 2837 |
. . 3
⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 15 | | 1re 11244 |
. . 3
⊢ 1 ∈
ℝ |
| 16 | | ifcl 4553 |
. . 3
⊢ ((𝑇 ∈ ℝ ∧ 1 ∈
ℝ) → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ) |
| 17 | 14, 15, 16 | sylancl 586 |
. 2
⊢ (𝜑 → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ) |
| 18 | | fzfid 13997 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (0...(𝑁 − 1)) ∈ Fin) |
| 19 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐴:ℕ0⟶ℂ) |
| 20 | 19, 8 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 21 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑥 ∈ ℂ) |
| 22 | | expcl 14103 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑥↑𝑘) ∈
ℂ) |
| 23 | 21, 22 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (𝑥↑𝑘) ∈ ℂ) |
| 24 | 20, 23 | mulcld 11264 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
| 25 | 7, 24 | sylan2 593 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
| 26 | 18, 25 | fsumcl 15752 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
| 27 | | ftalem.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 28 | 27 | nnnn0d 12571 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 29 | 28 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈
ℕ0) |
| 30 | 19, 29 | ffvelcdmd 7086 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐴‘𝑁) ∈ ℂ) |
| 31 | 21, 29 | expcld 14169 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑥↑𝑁) ∈ ℂ) |
| 32 | 30, 31 | mulcld 11264 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐴‘𝑁) · (𝑥↑𝑁)) ∈ ℂ) |
| 33 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐹 ∈ (Poly‘𝑆)) |
| 34 | | ftalem.2 |
. . . . . . . . . 10
⊢ 𝑁 = (deg‘𝐹) |
| 35 | 4, 34 | coeid2 26233 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (𝐹‘𝑥) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))) |
| 36 | 33, 21, 35 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐹‘𝑥) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))) |
| 37 | | nn0uz 12903 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
| 38 | 29, 37 | eleqtrdi 2843 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈
(ℤ≥‘0)) |
| 39 | | elfznn0 13643 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 40 | 39, 24 | sylan2 593 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
| 41 | | fveq2 6887 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑁 → (𝐴‘𝑘) = (𝐴‘𝑁)) |
| 42 | | oveq2 7422 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑁 → (𝑥↑𝑘) = (𝑥↑𝑁)) |
| 43 | 41, 42 | oveq12d 7432 |
. . . . . . . . 9
⊢ (𝑘 = 𝑁 → ((𝐴‘𝑘) · (𝑥↑𝑘)) = ((𝐴‘𝑁) · (𝑥↑𝑁))) |
| 44 | 38, 40, 43 | fsumm1 15770 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘)) + ((𝐴‘𝑁) · (𝑥↑𝑁)))) |
| 45 | 36, 44 | eqtrd 2769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐹‘𝑥) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘)) + ((𝐴‘𝑁) · (𝑥↑𝑁)))) |
| 46 | 26, 32, 45 | mvrraddd 11658 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘))) |
| 47 | 46 | fveq2d 6891 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) = (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘)))) |
| 48 | 26 | abscld 15458 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘))) ∈ ℝ) |
| 49 | 25 | abscld 15458 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ∈ ℝ) |
| 50 | 18, 49 | fsumrecl 15753 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ∈ ℝ) |
| 51 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈
ℝ+) |
| 52 | 51 | rpred 13060 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℝ) |
| 53 | 21 | abscld 15458 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘𝑥) ∈ ℝ) |
| 54 | 53, 29 | reexpcld 14186 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℝ) |
| 55 | 52, 54 | remulcld 11274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) ∈ ℝ) |
| 56 | 18, 25 | fsumabs 15820 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘))) ≤ Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘)))) |
| 57 | 11 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) ∈ ℝ) |
| 58 | 27 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ ℕ) |
| 59 | | nnm1nn0 12551 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
| 60 | 58, 59 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑁 − 1) ∈
ℕ0) |
| 61 | 53, 60 | reexpcld 14186 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈
ℝ) |
| 62 | 57, 61 | remulcld 11274 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) ∈
ℝ) |
| 63 | 10 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴‘𝑘)) ∈ ℝ) |
| 64 | 61 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈
ℝ) |
| 65 | 63, 64 | remulcld 11274 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) ∈
ℝ) |
| 66 | 20, 23 | absmuld 15476 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) →
(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) = ((abs‘(𝐴‘𝑘)) · (abs‘(𝑥↑𝑘)))) |
| 67 | 7, 66 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) = ((abs‘(𝐴‘𝑘)) · (abs‘(𝑥↑𝑘)))) |
| 68 | 7, 23 | sylan2 593 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑥↑𝑘) ∈ ℂ) |
| 69 | 68 | abscld 15458 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥↑𝑘)) ∈ ℝ) |
| 70 | 7, 20 | sylan2 593 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴‘𝑘) ∈ ℂ) |
| 71 | 70 | absge0d 15466 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 0 ≤
(abs‘(𝐴‘𝑘))) |
| 72 | | absexp 15326 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (abs‘(𝑥↑𝑘)) = ((abs‘𝑥)↑𝑘)) |
| 73 | 21, 7, 72 | syl2an 596 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥↑𝑘)) = ((abs‘𝑥)↑𝑘)) |
| 74 | 53 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘𝑥) ∈
ℝ) |
| 75 | 15 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ∈ ℝ) |
| 76 | 17 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ) |
| 77 | | max1 13210 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℝ ∧ 𝑇
∈ ℝ) → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
| 78 | 15, 14, 77 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
| 79 | 78 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
| 80 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥)) |
| 81 | 75, 76, 53, 79, 80 | lelttrd 11402 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 < (abs‘𝑥)) |
| 82 | 75, 53, 81 | ltled 11392 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ≤ (abs‘𝑥)) |
| 83 | 82 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 1 ≤ (abs‘𝑥)) |
| 84 | | elfzuz3 13544 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑘)) |
| 85 | 84 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑘)) |
| 86 | 74, 83, 85 | leexp2ad 14276 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘𝑥)↑𝑘) ≤ ((abs‘𝑥)↑(𝑁 − 1))) |
| 87 | 73, 86 | eqbrtrd 5147 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥↑𝑘)) ≤ ((abs‘𝑥)↑(𝑁 − 1))) |
| 88 | 69, 64, 63, 71, 87 | lemul2ad 12191 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘(𝐴‘𝑘)) · (abs‘(𝑥↑𝑘))) ≤ ((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
| 89 | 67, 88 | eqbrtrd 5147 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ≤ ((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
| 90 | 18, 49, 65, 89 | fsumle 15818 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ≤ Σ𝑘 ∈ (0...(𝑁 − 1))((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
| 91 | 61 | recnd 11272 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈
ℂ) |
| 92 | 63 | recnd 11272 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴‘𝑘)) ∈ ℂ) |
| 93 | 18, 91, 92 | fsummulc1 15804 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
| 94 | 90, 93 | breqtrrd 5153 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ≤ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
| 95 | 14 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 ∈ ℝ) |
| 96 | | max2 13212 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℝ ∧ 𝑇
∈ ℝ) → 𝑇
≤ if(1 ≤ 𝑇, 𝑇, 1)) |
| 97 | 15, 14, 96 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
| 98 | 97 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
| 99 | 95, 76, 53, 98, 80 | lelttrd 11402 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 < (abs‘𝑥)) |
| 100 | 1, 99 | eqbrtrrid 5161 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) < (abs‘𝑥)) |
| 101 | 57, 53, 51 | ltdivmuld 13111 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) < (abs‘𝑥) ↔ Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) < (𝐸 · (abs‘𝑥)))) |
| 102 | 100, 101 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) < (𝐸 · (abs‘𝑥))) |
| 103 | 52, 53 | remulcld 11274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · (abs‘𝑥)) ∈ ℝ) |
| 104 | 60 | nn0zd 12623 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑁 − 1) ∈ ℤ) |
| 105 | | 0red 11247 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 ∈ ℝ) |
| 106 | | 0lt1 11768 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
| 107 | 106 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < 1) |
| 108 | 105, 75, 53, 107, 81 | lttrd 11405 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < (abs‘𝑥)) |
| 109 | | expgt0 14119 |
. . . . . . . . . . 11
⊢
(((abs‘𝑥)
∈ ℝ ∧ (𝑁
− 1) ∈ ℤ ∧ 0 < (abs‘𝑥)) → 0 < ((abs‘𝑥)↑(𝑁 − 1))) |
| 110 | 53, 104, 108, 109 | syl3anc 1372 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < ((abs‘𝑥)↑(𝑁 − 1))) |
| 111 | | ltmul1 12100 |
. . . . . . . . . 10
⊢
((Σ𝑘 ∈
(0...(𝑁 −
1))(abs‘(𝐴‘𝑘)) ∈ ℝ ∧ (𝐸 · (abs‘𝑥)) ∈ ℝ ∧ (((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ ∧ 0 <
((abs‘𝑥)↑(𝑁 − 1)))) →
(Σ𝑘 ∈
(0...(𝑁 −
1))(abs‘(𝐴‘𝑘)) < (𝐸 · (abs‘𝑥)) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))))) |
| 112 | 57, 103, 61, 110, 111 | syl112anc 1375 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) < (𝐸 · (abs‘𝑥)) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))))) |
| 113 | 102, 112 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
| 114 | 53 | recnd 11272 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘𝑥) ∈ ℂ) |
| 115 | | expm1t 14114 |
. . . . . . . . . . . 12
⊢
(((abs‘𝑥)
∈ ℂ ∧ 𝑁
∈ ℕ) → ((abs‘𝑥)↑𝑁) = (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥))) |
| 116 | 114, 58, 115 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) = (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥))) |
| 117 | 91, 114 | mulcomd 11265 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)) = ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1)))) |
| 118 | 116, 117 | eqtrd 2769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) = ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1)))) |
| 119 | 118 | oveq2d 7430 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) = (𝐸 · ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1))))) |
| 120 | 52 | recnd 11272 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℂ) |
| 121 | 120, 114,
91 | mulassd 11267 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))) = (𝐸 · ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1))))) |
| 122 | 119, 121 | eqtr4d 2772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) = ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
| 123 | 113, 122 | breqtrrd 5153 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < (𝐸 · ((abs‘𝑥)↑𝑁))) |
| 124 | 50, 62, 55, 94, 123 | lelttrd 11402 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) < (𝐸 · ((abs‘𝑥)↑𝑁))) |
| 125 | 48, 50, 55, 56, 124 | lelttrd 11402 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘))) < (𝐸 · ((abs‘𝑥)↑𝑁))) |
| 126 | 47, 125 | eqbrtrd 5147 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))) |
| 127 | 126 | expr 456 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) |
| 128 | 127 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) |
| 129 | | breq1 5128 |
. . 3
⊢ (𝑟 = if(1 ≤ 𝑇, 𝑇, 1) → (𝑟 < (abs‘𝑥) ↔ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) |
| 130 | 129 | rspceaimv 3612 |
. 2
⊢ ((if(1
≤ 𝑇, 𝑇, 1) ∈ ℝ ∧ ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) |
| 131 | 17, 128, 130 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) |