MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem1 Structured version   Visualization version   GIF version

Theorem ftalem1 26981
Description: Lemma for fta 26988: "growth lemma". There exists some 𝑟 such that 𝐹 is arbitrarily close in proportion to its dominant term. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem1.5 (𝜑𝐸 ∈ ℝ+)
ftalem1.6 𝑇 = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸)
Assertion
Ref Expression
ftalem1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
Distinct variable groups:   𝑘,𝑟,𝑥,𝐴   𝐸,𝑟   𝑘,𝑁,𝑟,𝑥   𝑘,𝐹,𝑟,𝑥   𝜑,𝑘,𝑥   𝑆,𝑘   𝑇,𝑘,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑟)   𝑆(𝑥,𝑟)   𝐸(𝑥,𝑘)

Proof of Theorem ftalem1
StepHypRef Expression
1 ftalem1.6 . . . 4 𝑇 = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸)
2 fzfid 13880 . . . . . 6 (𝜑 → (0...(𝑁 − 1)) ∈ Fin)
3 ftalem.3 . . . . . . . . 9 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.1 . . . . . . . . . 10 𝐴 = (coeff‘𝐹)
54coef3 26135 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
63, 5syl 17 . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
7 elfznn0 13523 . . . . . . . 8 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
8 ffvelcdm 7015 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
96, 7, 8syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝐴𝑘) ∈ ℂ)
109abscld 15346 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴𝑘)) ∈ ℝ)
112, 10fsumrecl 15641 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) ∈ ℝ)
12 ftalem1.5 . . . . 5 (𝜑𝐸 ∈ ℝ+)
1311, 12rerpdivcld 12968 . . . 4 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸) ∈ ℝ)
141, 13eqeltrid 2832 . . 3 (𝜑𝑇 ∈ ℝ)
15 1re 11115 . . 3 1 ∈ ℝ
16 ifcl 4522 . . 3 ((𝑇 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ)
1714, 15, 16sylancl 586 . 2 (𝜑 → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ)
18 fzfid 13880 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (0...(𝑁 − 1)) ∈ Fin)
196adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐴:ℕ0⟶ℂ)
2019, 8sylan 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
21 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑥 ∈ ℂ)
22 expcl 13986 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
2321, 22sylan 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
2420, 23mulcld 11135 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
257, 24sylan2 593 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
2618, 25fsumcl 15640 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
27 ftalem.4 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
2827nnnn0d 12445 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
2928adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ ℕ0)
3019, 29ffvelcdmd 7019 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐴𝑁) ∈ ℂ)
3121, 29expcld 14053 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑥𝑁) ∈ ℂ)
3230, 31mulcld 11135 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐴𝑁) · (𝑥𝑁)) ∈ ℂ)
333adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐹 ∈ (Poly‘𝑆))
34 ftalem.2 . . . . . . . . . 10 𝑁 = (deg‘𝐹)
354, 34coeid2 26142 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (𝐹𝑥) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))
3633, 21, 35syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐹𝑥) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))
37 nn0uz 12777 . . . . . . . . . 10 0 = (ℤ‘0)
3829, 37eleqtrdi 2838 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ (ℤ‘0))
39 elfznn0 13523 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
4039, 24sylan2 593 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
41 fveq2 6822 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝐴𝑘) = (𝐴𝑁))
42 oveq2 7357 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝑥𝑘) = (𝑥𝑁))
4341, 42oveq12d 7367 . . . . . . . . 9 (𝑘 = 𝑁 → ((𝐴𝑘) · (𝑥𝑘)) = ((𝐴𝑁) · (𝑥𝑁)))
4438, 40, 43fsumm1 15658 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)) + ((𝐴𝑁) · (𝑥𝑁))))
4536, 44eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐹𝑥) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)) + ((𝐴𝑁) · (𝑥𝑁))))
4626, 32, 45mvrraddd 11532 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘)))
4746fveq2d 6826 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) = (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))))
4826abscld 15346 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))) ∈ ℝ)
4925abscld 15346 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴𝑘) · (𝑥𝑘))) ∈ ℝ)
5018, 49fsumrecl 15641 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) ∈ ℝ)
5112adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℝ+)
5251rpred 12937 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℝ)
5321abscld 15346 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘𝑥) ∈ ℝ)
5453, 29reexpcld 14070 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℝ)
5552, 54remulcld 11145 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) ∈ ℝ)
5618, 25fsumabs 15708 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))) ≤ Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))))
5711adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) ∈ ℝ)
5827adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ ℕ)
59 nnm1nn0 12425 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
6058, 59syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑁 − 1) ∈ ℕ0)
6153, 60reexpcld 14070 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ)
6257, 61remulcld 11145 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) ∈ ℝ)
6310adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴𝑘)) ∈ ℝ)
6461adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ)
6563, 64remulcld 11145 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) ∈ ℝ)
6620, 23absmuld 15364 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) · (𝑥𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑥𝑘))))
677, 66sylan2 593 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴𝑘) · (𝑥𝑘))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑥𝑘))))
687, 23sylan2 593 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑥𝑘) ∈ ℂ)
6968abscld 15346 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥𝑘)) ∈ ℝ)
707, 20sylan2 593 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴𝑘) ∈ ℂ)
7170absge0d 15354 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 0 ≤ (abs‘(𝐴𝑘)))
72 absexp 15211 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝑥𝑘)) = ((abs‘𝑥)↑𝑘))
7321, 7, 72syl2an 596 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥𝑘)) = ((abs‘𝑥)↑𝑘))
7453adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘𝑥) ∈ ℝ)
7515a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ∈ ℝ)
7617adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ)
77 max1 13087 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1))
7815, 14, 77sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1))
7978adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1))
80 simprr 772 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))
8175, 76, 53, 79, 80lelttrd 11274 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 < (abs‘𝑥))
8275, 53, 81ltled 11264 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ≤ (abs‘𝑥))
8382adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 1 ≤ (abs‘𝑥))
84 elfzuz3 13424 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑘))
8584adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ (ℤ𝑘))
8674, 83, 85leexp2ad 14161 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘𝑥)↑𝑘) ≤ ((abs‘𝑥)↑(𝑁 − 1)))
8773, 86eqbrtrd 5114 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥𝑘)) ≤ ((abs‘𝑥)↑(𝑁 − 1)))
8869, 64, 63, 71, 87lemul2ad 12065 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘(𝐴𝑘)) · (abs‘(𝑥𝑘))) ≤ ((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
8967, 88eqbrtrd 5114 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴𝑘) · (𝑥𝑘))) ≤ ((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9018, 49, 65, 89fsumle 15706 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) ≤ Σ𝑘 ∈ (0...(𝑁 − 1))((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9161recnd 11143 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈ ℂ)
9263recnd 11143 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴𝑘)) ∈ ℂ)
9318, 91, 92fsummulc1 15692 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9490, 93breqtrrd 5120 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) ≤ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))))
9514adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 ∈ ℝ)
96 max2 13089 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → 𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1))
9715, 14, 96sylancr 587 . . . . . . . . . . . . 13 (𝜑𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1))
9897adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1))
9995, 76, 53, 98, 80lelttrd 11274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 < (abs‘𝑥))
1001, 99eqbrtrrid 5128 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸) < (abs‘𝑥))
10157, 53, 51ltdivmuld 12988 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) / 𝐸) < (abs‘𝑥) ↔ Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥))))
102100, 101mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥)))
10352, 53remulcld 11145 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · (abs‘𝑥)) ∈ ℝ)
10460nn0zd 12497 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑁 − 1) ∈ ℤ)
105 0red 11118 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 ∈ ℝ)
106 0lt1 11642 . . . . . . . . . . . . 13 0 < 1
107106a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < 1)
108105, 75, 53, 107, 81lttrd 11277 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < (abs‘𝑥))
109 expgt0 14002 . . . . . . . . . . 11 (((abs‘𝑥) ∈ ℝ ∧ (𝑁 − 1) ∈ ℤ ∧ 0 < (abs‘𝑥)) → 0 < ((abs‘𝑥)↑(𝑁 − 1)))
11053, 104, 108, 109syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < ((abs‘𝑥)↑(𝑁 − 1)))
111 ltmul1 11974 . . . . . . . . . 10 ((Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) ∈ ℝ ∧ (𝐸 · (abs‘𝑥)) ∈ ℝ ∧ (((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ ∧ 0 < ((abs‘𝑥)↑(𝑁 − 1)))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥)) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1)))))
11257, 103, 61, 110, 111syl112anc 1376 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) < (𝐸 · (abs‘𝑥)) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1)))))
113102, 112mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))))
11453recnd 11143 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘𝑥) ∈ ℂ)
115 expm1t 13997 . . . . . . . . . . . 12 (((abs‘𝑥) ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((abs‘𝑥)↑𝑁) = (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)))
116114, 58, 115syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) = (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)))
11791, 114mulcomd 11136 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)) = ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1))))
118116, 117eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) = ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1))))
119118oveq2d 7365 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) = (𝐸 · ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1)))))
12052recnd 11143 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℂ)
121120, 114, 91mulassd 11138 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))) = (𝐸 · ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1)))))
122119, 121eqtr4d 2767 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) = ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))))
123113, 122breqtrrd 5120 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
12450, 62, 55, 94, 123lelttrd 11274 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴𝑘) · (𝑥𝑘))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
12548, 50, 55, 56, 124lelttrd 11274 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴𝑘) · (𝑥𝑘))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
12647, 125eqbrtrd 5114 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))
127126expr 456 . . 3 ((𝜑𝑥 ∈ ℂ) → (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
128127ralrimiva 3121 . 2 (𝜑 → ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
129 breq1 5095 . . 3 (𝑟 = if(1 ≤ 𝑇, 𝑇, 1) → (𝑟 < (abs‘𝑥) ↔ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥)))
130129rspceaimv 3583 . 2 ((if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ ∧ ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
13117, 128, 130syl2anc 584 1 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹𝑥) − ((𝐴𝑁) · (𝑥𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ifcif 4476   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  0cn0 12384  cz 12471  cuz 12735  +crp 12893  ...cfz 13410  cexp 13968  abscabs 15141  Σcsu 15593  Polycply 26087  coeffccoe 26089  degcdgr 26090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-0p 25569  df-ply 26091  df-coe 26093  df-dgr 26094
This theorem is referenced by:  ftalem2  26982
  Copyright terms: Public domain W3C validator