Proof of Theorem ftalem1
Step | Hyp | Ref
| Expression |
1 | | ftalem1.6 |
. . . 4
⊢ 𝑇 = (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) |
2 | | fzfid 13693 |
. . . . . 6
⊢ (𝜑 → (0...(𝑁 − 1)) ∈ Fin) |
3 | | ftalem.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
4 | | ftalem.1 |
. . . . . . . . . 10
⊢ 𝐴 = (coeff‘𝐹) |
5 | 4 | coef3 25393 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
6 | 3, 5 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
7 | | elfznn0 13349 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) |
8 | | ffvelrn 6959 |
. . . . . . . 8
⊢ ((𝐴:ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
9 | 6, 7, 8 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴‘𝑘) ∈ ℂ) |
10 | 9 | abscld 15148 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴‘𝑘)) ∈ ℝ) |
11 | 2, 10 | fsumrecl 15446 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) ∈ ℝ) |
12 | | ftalem1.5 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
13 | 11, 12 | rerpdivcld 12803 |
. . . 4
⊢ (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) ∈ ℝ) |
14 | 1, 13 | eqeltrid 2843 |
. . 3
⊢ (𝜑 → 𝑇 ∈ ℝ) |
15 | | 1re 10975 |
. . 3
⊢ 1 ∈
ℝ |
16 | | ifcl 4504 |
. . 3
⊢ ((𝑇 ∈ ℝ ∧ 1 ∈
ℝ) → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ) |
17 | 14, 15, 16 | sylancl 586 |
. 2
⊢ (𝜑 → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ) |
18 | | fzfid 13693 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (0...(𝑁 − 1)) ∈ Fin) |
19 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐴:ℕ0⟶ℂ) |
20 | 19, 8 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
21 | | simprl 768 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑥 ∈ ℂ) |
22 | | expcl 13800 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑥↑𝑘) ∈
ℂ) |
23 | 21, 22 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → (𝑥↑𝑘) ∈ ℂ) |
24 | 20, 23 | mulcld 10995 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
25 | 7, 24 | sylan2 593 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
26 | 18, 25 | fsumcl 15445 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
27 | | ftalem.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
28 | 27 | nnnn0d 12293 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
29 | 28 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈
ℕ0) |
30 | 19, 29 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐴‘𝑁) ∈ ℂ) |
31 | 21, 29 | expcld 13864 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑥↑𝑁) ∈ ℂ) |
32 | 30, 31 | mulcld 10995 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐴‘𝑁) · (𝑥↑𝑁)) ∈ ℂ) |
33 | 3 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐹 ∈ (Poly‘𝑆)) |
34 | | ftalem.2 |
. . . . . . . . . 10
⊢ 𝑁 = (deg‘𝐹) |
35 | 4, 34 | coeid2 25400 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (𝐹‘𝑥) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))) |
36 | 33, 21, 35 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐹‘𝑥) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))) |
37 | | nn0uz 12620 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
38 | 29, 37 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈
(ℤ≥‘0)) |
39 | | elfznn0 13349 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
40 | 39, 24 | sylan2 593 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
41 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑁 → (𝐴‘𝑘) = (𝐴‘𝑁)) |
42 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑁 → (𝑥↑𝑘) = (𝑥↑𝑁)) |
43 | 41, 42 | oveq12d 7293 |
. . . . . . . . 9
⊢ (𝑘 = 𝑁 → ((𝐴‘𝑘) · (𝑥↑𝑘)) = ((𝐴‘𝑁) · (𝑥↑𝑁))) |
44 | 38, 40, 43 | fsumm1 15463 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘)) + ((𝐴‘𝑁) · (𝑥↑𝑁)))) |
45 | 36, 44 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐹‘𝑥) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘)) + ((𝐴‘𝑁) · (𝑥↑𝑁)))) |
46 | 26, 32, 45 | mvrraddd 11387 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘))) |
47 | 46 | fveq2d 6778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) = (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘)))) |
48 | 26 | abscld 15148 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘))) ∈ ℝ) |
49 | 25 | abscld 15148 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ∈ ℝ) |
50 | 18, 49 | fsumrecl 15446 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ∈ ℝ) |
51 | 12 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈
ℝ+) |
52 | 51 | rpred 12772 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℝ) |
53 | 21 | abscld 15148 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘𝑥) ∈ ℝ) |
54 | 53, 29 | reexpcld 13881 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) ∈ ℝ) |
55 | 52, 54 | remulcld 11005 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) ∈ ℝ) |
56 | 18, 25 | fsumabs 15513 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘))) ≤ Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘)))) |
57 | 11 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) ∈ ℝ) |
58 | 27 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑁 ∈ ℕ) |
59 | | nnm1nn0 12274 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
60 | 58, 59 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑁 − 1) ∈
ℕ0) |
61 | 53, 60 | reexpcld 13881 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈
ℝ) |
62 | 57, 61 | remulcld 11005 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) ∈
ℝ) |
63 | 10 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴‘𝑘)) ∈ ℝ) |
64 | 61 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈
ℝ) |
65 | 63, 64 | remulcld 11005 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) ∈
ℝ) |
66 | 20, 23 | absmuld 15166 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ ℕ0) →
(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) = ((abs‘(𝐴‘𝑘)) · (abs‘(𝑥↑𝑘)))) |
67 | 7, 66 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) = ((abs‘(𝐴‘𝑘)) · (abs‘(𝑥↑𝑘)))) |
68 | 7, 23 | sylan2 593 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑥↑𝑘) ∈ ℂ) |
69 | 68 | abscld 15148 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥↑𝑘)) ∈ ℝ) |
70 | 7, 20 | sylan2 593 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴‘𝑘) ∈ ℂ) |
71 | 70 | absge0d 15156 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 0 ≤
(abs‘(𝐴‘𝑘))) |
72 | | absexp 15016 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (abs‘(𝑥↑𝑘)) = ((abs‘𝑥)↑𝑘)) |
73 | 21, 7, 72 | syl2an 596 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥↑𝑘)) = ((abs‘𝑥)↑𝑘)) |
74 | 53 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘𝑥) ∈
ℝ) |
75 | 15 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ∈ ℝ) |
76 | 17 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → if(1 ≤ 𝑇, 𝑇, 1) ∈ ℝ) |
77 | | max1 12919 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℝ ∧ 𝑇
∈ ℝ) → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
78 | 15, 14, 77 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
79 | 78 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
80 | | simprr 770 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥)) |
81 | 75, 76, 53, 79, 80 | lelttrd 11133 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 < (abs‘𝑥)) |
82 | 75, 53, 81 | ltled 11123 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 1 ≤ (abs‘𝑥)) |
83 | 82 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 1 ≤ (abs‘𝑥)) |
84 | | elfzuz3 13253 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑘)) |
85 | 84 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑘)) |
86 | 74, 83, 85 | leexp2ad 13971 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘𝑥)↑𝑘) ≤ ((abs‘𝑥)↑(𝑁 − 1))) |
87 | 73, 86 | eqbrtrd 5096 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝑥↑𝑘)) ≤ ((abs‘𝑥)↑(𝑁 − 1))) |
88 | 69, 64, 63, 71, 87 | lemul2ad 11915 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((abs‘(𝐴‘𝑘)) · (abs‘(𝑥↑𝑘))) ≤ ((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
89 | 67, 88 | eqbrtrd 5096 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ≤ ((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
90 | 18, 49, 65, 89 | fsumle 15511 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ≤ Σ𝑘 ∈ (0...(𝑁 − 1))((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
91 | 61 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑(𝑁 − 1)) ∈
ℂ) |
92 | 63 | recnd 11003 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (abs‘(𝐴‘𝑘)) ∈ ℂ) |
93 | 18, 91, 92 | fsummulc1 15497 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
94 | 90, 93 | breqtrrd 5102 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) ≤ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
95 | 14 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 ∈ ℝ) |
96 | | max2 12921 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℝ ∧ 𝑇
∈ ℝ) → 𝑇
≤ if(1 ≤ 𝑇, 𝑇, 1)) |
97 | 15, 14, 96 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
98 | 97 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 ≤ if(1 ≤ 𝑇, 𝑇, 1)) |
99 | 95, 76, 53, 98, 80 | lelttrd 11133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝑇 < (abs‘𝑥)) |
100 | 1, 99 | eqbrtrrid 5110 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) < (abs‘𝑥)) |
101 | 57, 53, 51 | ltdivmuld 12823 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) / 𝐸) < (abs‘𝑥) ↔ Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) < (𝐸 · (abs‘𝑥)))) |
102 | 100, 101 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) < (𝐸 · (abs‘𝑥))) |
103 | 52, 53 | remulcld 11005 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · (abs‘𝑥)) ∈ ℝ) |
104 | 60 | nn0zd 12424 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝑁 − 1) ∈ ℤ) |
105 | | 0red 10978 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 ∈ ℝ) |
106 | | 0lt1 11497 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
107 | 106 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < 1) |
108 | 105, 75, 53, 107, 81 | lttrd 11136 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < (abs‘𝑥)) |
109 | | expgt0 13816 |
. . . . . . . . . . 11
⊢
(((abs‘𝑥)
∈ ℝ ∧ (𝑁
− 1) ∈ ℤ ∧ 0 < (abs‘𝑥)) → 0 < ((abs‘𝑥)↑(𝑁 − 1))) |
110 | 53, 104, 108, 109 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 0 < ((abs‘𝑥)↑(𝑁 − 1))) |
111 | | ltmul1 11825 |
. . . . . . . . . 10
⊢
((Σ𝑘 ∈
(0...(𝑁 −
1))(abs‘(𝐴‘𝑘)) ∈ ℝ ∧ (𝐸 · (abs‘𝑥)) ∈ ℝ ∧ (((abs‘𝑥)↑(𝑁 − 1)) ∈ ℝ ∧ 0 <
((abs‘𝑥)↑(𝑁 − 1)))) →
(Σ𝑘 ∈
(0...(𝑁 −
1))(abs‘(𝐴‘𝑘)) < (𝐸 · (abs‘𝑥)) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))))) |
112 | 57, 103, 61, 110, 111 | syl112anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) < (𝐸 · (abs‘𝑥)) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))))) |
113 | 102, 112 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
114 | 53 | recnd 11003 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘𝑥) ∈ ℂ) |
115 | | expm1t 13811 |
. . . . . . . . . . . 12
⊢
(((abs‘𝑥)
∈ ℂ ∧ 𝑁
∈ ℕ) → ((abs‘𝑥)↑𝑁) = (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥))) |
116 | 114, 58, 115 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) = (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥))) |
117 | 91, 114 | mulcomd 10996 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (((abs‘𝑥)↑(𝑁 − 1)) · (abs‘𝑥)) = ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1)))) |
118 | 116, 117 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((abs‘𝑥)↑𝑁) = ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1)))) |
119 | 118 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) = (𝐸 · ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1))))) |
120 | 52 | recnd 11003 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → 𝐸 ∈ ℂ) |
121 | 120, 114,
91 | mulassd 10998 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1))) = (𝐸 · ((abs‘𝑥) · ((abs‘𝑥)↑(𝑁 − 1))))) |
122 | 119, 121 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (𝐸 · ((abs‘𝑥)↑𝑁)) = ((𝐸 · (abs‘𝑥)) · ((abs‘𝑥)↑(𝑁 − 1)))) |
123 | 113, 122 | breqtrrd 5102 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘(𝐴‘𝑘)) · ((abs‘𝑥)↑(𝑁 − 1))) < (𝐸 · ((abs‘𝑥)↑𝑁))) |
124 | 50, 62, 55, 94, 123 | lelttrd 11133 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → Σ𝑘 ∈ (0...(𝑁 − 1))(abs‘((𝐴‘𝑘) · (𝑥↑𝑘))) < (𝐸 · ((abs‘𝑥)↑𝑁))) |
125 | 48, 50, 55, 56, 124 | lelttrd 11133 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘Σ𝑘 ∈ (0...(𝑁 − 1))((𝐴‘𝑘) · (𝑥↑𝑘))) < (𝐸 · ((abs‘𝑥)↑𝑁))) |
126 | 47, 125 | eqbrtrd 5096 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁))) |
127 | 126 | expr 457 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) |
128 | 127 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) |
129 | | breq1 5077 |
. . 3
⊢ (𝑟 = if(1 ≤ 𝑇, 𝑇, 1) → (𝑟 < (abs‘𝑥) ↔ if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥))) |
130 | 129 | rspceaimv 3565 |
. 2
⊢ ((if(1
≤ 𝑇, 𝑇, 1) ∈ ℝ ∧ ∀𝑥 ∈ ℂ (if(1 ≤ 𝑇, 𝑇, 1) < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) |
131 | 17, 128, 130 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘((𝐹‘𝑥) − ((𝐴‘𝑁) · (𝑥↑𝑁)))) < (𝐸 · ((abs‘𝑥)↑𝑁)))) |