MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmcvcn Structured version   Visualization version   GIF version

Theorem nmcvcn 28105
Description: The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcvcn.1 𝑁 = (normCV𝑈)
nmcvcn.2 𝐶 = (IndMet‘𝑈)
nmcvcn.j 𝐽 = (MetOpen‘𝐶)
nmcvcn.k 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
nmcvcn (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾))

Proof of Theorem nmcvcn
Dummy variables 𝑒 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 nmcvcn.1 . . 3 𝑁 = (normCV𝑈)
31, 2nvf 28070 . 2 (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶ℝ)
4 simprr 791 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → 𝑒 ∈ ℝ+)
51, 2nvcl 28071 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁𝑥) ∈ ℝ)
65ex 403 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈) → (𝑁𝑥) ∈ ℝ))
71, 2nvcl 28071 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑁𝑦) ∈ ℝ)
87ex 403 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝑦 ∈ (BaseSet‘𝑈) → (𝑁𝑦) ∈ ℝ))
96, 8anim12d 604 . . . . . . . . . . . 12 (𝑈 ∈ NrmCVec → ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ)))
10 eqid 2825 . . . . . . . . . . . . . 14 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
1110remet 22963 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
12 metcl 22507 . . . . . . . . . . . . 13 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) ∧ (𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
1311, 12mp3an1 1578 . . . . . . . . . . . 12 (((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
149, 13syl6 35 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ))
15143impib 1150 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
16 nmcvcn.2 . . . . . . . . . . . 12 𝐶 = (IndMet‘𝑈)
171, 16imsmet 28101 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
18 metcl 22507 . . . . . . . . . . 11 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) ∈ ℝ)
1917, 18syl3an1 1208 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) ∈ ℝ)
20 eqid 2825 . . . . . . . . . . . 12 ( +𝑣𝑈) = ( +𝑣𝑈)
21 eqid 2825 . . . . . . . . . . . 12 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
221, 20, 21, 2nvabs 28082 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (abs‘((𝑁𝑥) − (𝑁𝑦))) ≤ (𝑁‘(𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))))
2393impib 1150 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ))
2410remetdval 22962 . . . . . . . . . . . 12 (((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) = (abs‘((𝑁𝑥) − (𝑁𝑦))))
2523, 24syl 17 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) = (abs‘((𝑁𝑥) − (𝑁𝑦))))
261, 20, 21, 2, 16imsdval2 28097 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) = (𝑁‘(𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))))
2722, 25, 263brtr4d 4905 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦))
2815, 19, 27jca31 512 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)))
29283expa 1153 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)))
30 rpre 12120 . . . . . . . 8 (𝑒 ∈ ℝ+𝑒 ∈ ℝ)
31 lelttr 10447 . . . . . . . . . . 11 ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ ∧ 𝑒 ∈ ℝ) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦) ∧ (𝑥𝐶𝑦) < 𝑒) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
32313expa 1153 . . . . . . . . . 10 (((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ 𝑒 ∈ ℝ) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦) ∧ (𝑥𝐶𝑦) < 𝑒) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3332expdimp 446 . . . . . . . . 9 ((((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ 𝑒 ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3433an32s 644 . . . . . . . 8 ((((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)) ∧ 𝑒 ∈ ℝ) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3529, 30, 34syl2an 591 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) ∧ 𝑒 ∈ ℝ+) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3635ex 403 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑒 ∈ ℝ+ → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)))
3736ralrimdva 3178 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑒 ∈ ℝ+ → ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)))
3837impr 448 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
39 breq2 4877 . . . . 5 (𝑑 = 𝑒 → ((𝑥𝐶𝑦) < 𝑑 ↔ (𝑥𝐶𝑦) < 𝑒))
4039rspceaimv 3534 . . . 4 ((𝑒 ∈ ℝ+ ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
414, 38, 40syl2anc 581 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → ∃𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
4241ralrimivva 3180 . 2 (𝑈 ∈ NrmCVec → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
431, 16imsxmet 28102 . . 3 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
4410rexmet 22964 . . 3 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
45 nmcvcn.j . . . 4 𝐽 = (MetOpen‘𝐶)
46 nmcvcn.k . . . . 5 𝐾 = (topGen‘ran (,))
47 eqid 2825 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4810, 47tgioo 22969 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4946, 48eqtri 2849 . . . 4 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
5045, 49metcn 22718 . . 3 ((𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)) → (𝑁 ∈ (𝐽 Cn 𝐾) ↔ (𝑁:(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))))
5143, 44, 50sylancl 582 . 2 (𝑈 ∈ NrmCVec → (𝑁 ∈ (𝐽 Cn 𝐾) ↔ (𝑁:(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))))
523, 42, 51mpbir2and 706 1 (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3117  wrex 3118   class class class wbr 4873   × cxp 5340  ran crn 5343  cres 5344  ccom 5346  wf 6119  cfv 6123  (class class class)co 6905  cr 10251  1c1 10253   < clt 10391  cle 10392  cmin 10585  -cneg 10586  +crp 12112  (,)cioo 12463  abscabs 14351  topGenctg 16451  ∞Metcxmet 20091  Metcmet 20092  MetOpencmopn 20096   Cn ccn 21399  NrmCVeccnv 27994   +𝑣 cpv 27995  BaseSetcba 27996   ·𝑠OLD cns 27997  normCVcnmcv 28000  IndMetcims 28001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-sup 8617  df-inf 8618  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-seq 13096  df-exp 13155  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-topgen 16457  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-top 21069  df-topon 21086  df-bases 21121  df-cn 21402  df-cnp 21403  df-grpo 27903  df-gid 27904  df-ginv 27905  df-gdiv 27906  df-ablo 27955  df-vc 27969  df-nv 28002  df-va 28005  df-ba 28006  df-sm 28007  df-0v 28008  df-vs 28009  df-nmcv 28010  df-ims 28011
This theorem is referenced by:  nmcnc  28106
  Copyright terms: Public domain W3C validator