MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmcvcn Structured version   Visualization version   GIF version

Theorem nmcvcn 30675
Description: The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcvcn.1 𝑁 = (normCV𝑈)
nmcvcn.2 𝐶 = (IndMet‘𝑈)
nmcvcn.j 𝐽 = (MetOpen‘𝐶)
nmcvcn.k 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
nmcvcn (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾))

Proof of Theorem nmcvcn
Dummy variables 𝑒 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 nmcvcn.1 . . 3 𝑁 = (normCV𝑈)
31, 2nvf 30640 . 2 (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶ℝ)
4 simprr 772 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → 𝑒 ∈ ℝ+)
51, 2nvcl 30641 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁𝑥) ∈ ℝ)
65ex 412 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈) → (𝑁𝑥) ∈ ℝ))
71, 2nvcl 30641 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑁𝑦) ∈ ℝ)
87ex 412 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝑦 ∈ (BaseSet‘𝑈) → (𝑁𝑦) ∈ ℝ))
96, 8anim12d 609 . . . . . . . . . . . 12 (𝑈 ∈ NrmCVec → ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ)))
10 eqid 2731 . . . . . . . . . . . . . 14 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
1110remet 24705 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
12 metcl 24247 . . . . . . . . . . . . 13 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) ∧ (𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
1311, 12mp3an1 1450 . . . . . . . . . . . 12 (((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
149, 13syl6 35 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ))
15143impib 1116 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
16 nmcvcn.2 . . . . . . . . . . . 12 𝐶 = (IndMet‘𝑈)
171, 16imsmet 30671 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
18 metcl 24247 . . . . . . . . . . 11 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) ∈ ℝ)
1917, 18syl3an1 1163 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) ∈ ℝ)
20 eqid 2731 . . . . . . . . . . . 12 ( +𝑣𝑈) = ( +𝑣𝑈)
21 eqid 2731 . . . . . . . . . . . 12 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
221, 20, 21, 2nvabs 30652 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (abs‘((𝑁𝑥) − (𝑁𝑦))) ≤ (𝑁‘(𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))))
2393impib 1116 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ))
2410remetdval 24704 . . . . . . . . . . . 12 (((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) = (abs‘((𝑁𝑥) − (𝑁𝑦))))
2523, 24syl 17 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) = (abs‘((𝑁𝑥) − (𝑁𝑦))))
261, 20, 21, 2, 16imsdval2 30667 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) = (𝑁‘(𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))))
2722, 25, 263brtr4d 5121 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦))
2815, 19, 27jca31 514 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)))
29283expa 1118 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)))
30 rpre 12899 . . . . . . . 8 (𝑒 ∈ ℝ+𝑒 ∈ ℝ)
31 lelttr 11203 . . . . . . . . . . 11 ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ ∧ 𝑒 ∈ ℝ) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦) ∧ (𝑥𝐶𝑦) < 𝑒) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
32313expa 1118 . . . . . . . . . 10 (((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ 𝑒 ∈ ℝ) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦) ∧ (𝑥𝐶𝑦) < 𝑒) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3332expdimp 452 . . . . . . . . 9 ((((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ 𝑒 ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3433an32s 652 . . . . . . . 8 ((((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)) ∧ 𝑒 ∈ ℝ) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3529, 30, 34syl2an 596 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) ∧ 𝑒 ∈ ℝ+) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3635ex 412 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑒 ∈ ℝ+ → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)))
3736ralrimdva 3132 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑒 ∈ ℝ+ → ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)))
3837impr 454 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
39 breq2 5093 . . . . 5 (𝑑 = 𝑒 → ((𝑥𝐶𝑦) < 𝑑 ↔ (𝑥𝐶𝑦) < 𝑒))
4039rspceaimv 3578 . . . 4 ((𝑒 ∈ ℝ+ ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
414, 38, 40syl2anc 584 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → ∃𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
4241ralrimivva 3175 . 2 (𝑈 ∈ NrmCVec → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
431, 16imsxmet 30672 . . 3 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
4410rexmet 24706 . . 3 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
45 nmcvcn.j . . . 4 𝐽 = (MetOpen‘𝐶)
46 nmcvcn.k . . . . 5 𝐾 = (topGen‘ran (,))
47 eqid 2731 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4810, 47tgioo 24711 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4946, 48eqtri 2754 . . . 4 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
5045, 49metcn 24458 . . 3 ((𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)) → (𝑁 ∈ (𝐽 Cn 𝐾) ↔ (𝑁:(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))))
5143, 44, 50sylancl 586 . 2 (𝑈 ∈ NrmCVec → (𝑁 ∈ (𝐽 Cn 𝐾) ↔ (𝑁:(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))))
523, 42, 51mpbir2and 713 1 (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056   class class class wbr 5089   × cxp 5612  ran crn 5615  cres 5616  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  1c1 11007   < clt 11146  cle 11147  cmin 11344  -cneg 11345  +crp 12890  (,)cioo 13245  abscabs 15141  topGenctg 17341  ∞Metcxmet 21276  Metcmet 21277  MetOpencmopn 21281   Cn ccn 23139  NrmCVeccnv 30564   +𝑣 cpv 30565  BaseSetcba 30566   ·𝑠OLD cns 30567  normCVcnmcv 30570  IndMetcims 30571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cn 23142  df-cnp 23143  df-grpo 30473  df-gid 30474  df-ginv 30475  df-gdiv 30476  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-vs 30579  df-nmcv 30580  df-ims 30581
This theorem is referenced by:  nmcnc  30676
  Copyright terms: Public domain W3C validator