MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmcvcn Structured version   Visualization version   GIF version

Theorem nmcvcn 28958
Description: The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcvcn.1 𝑁 = (normCV𝑈)
nmcvcn.2 𝐶 = (IndMet‘𝑈)
nmcvcn.j 𝐽 = (MetOpen‘𝐶)
nmcvcn.k 𝐾 = (topGen‘ran (,))
Assertion
Ref Expression
nmcvcn (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾))

Proof of Theorem nmcvcn
Dummy variables 𝑒 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 nmcvcn.1 . . 3 𝑁 = (normCV𝑈)
31, 2nvf 28923 . 2 (𝑈 ∈ NrmCVec → 𝑁:(BaseSet‘𝑈)⟶ℝ)
4 simprr 769 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → 𝑒 ∈ ℝ+)
51, 2nvcl 28924 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑁𝑥) ∈ ℝ)
65ex 412 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝑥 ∈ (BaseSet‘𝑈) → (𝑁𝑥) ∈ ℝ))
71, 2nvcl 28924 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑁𝑦) ∈ ℝ)
87ex 412 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝑦 ∈ (BaseSet‘𝑈) → (𝑁𝑦) ∈ ℝ))
96, 8anim12d 608 . . . . . . . . . . . 12 (𝑈 ∈ NrmCVec → ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ)))
10 eqid 2738 . . . . . . . . . . . . . 14 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
1110remet 23859 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
12 metcl 23393 . . . . . . . . . . . . 13 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) ∧ (𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
1311, 12mp3an1 1446 . . . . . . . . . . . 12 (((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
149, 13syl6 35 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → ((𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ))
15143impib 1114 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ)
16 nmcvcn.2 . . . . . . . . . . . 12 𝐶 = (IndMet‘𝑈)
171, 16imsmet 28954 . . . . . . . . . . 11 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
18 metcl 23393 . . . . . . . . . . 11 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) ∈ ℝ)
1917, 18syl3an1 1161 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) ∈ ℝ)
20 eqid 2738 . . . . . . . . . . . 12 ( +𝑣𝑈) = ( +𝑣𝑈)
21 eqid 2738 . . . . . . . . . . . 12 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
221, 20, 21, 2nvabs 28935 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (abs‘((𝑁𝑥) − (𝑁𝑦))) ≤ (𝑁‘(𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))))
2393impib 1114 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ))
2410remetdval 23858 . . . . . . . . . . . 12 (((𝑁𝑥) ∈ ℝ ∧ (𝑁𝑦) ∈ ℝ) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) = (abs‘((𝑁𝑥) − (𝑁𝑦))))
2523, 24syl 17 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) = (abs‘((𝑁𝑥) − (𝑁𝑦))))
261, 20, 21, 2, 16imsdval2 28950 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑦) = (𝑁‘(𝑥( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑦))))
2722, 25, 263brtr4d 5102 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦))
2815, 19, 27jca31 514 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)))
29283expa 1116 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)))
30 rpre 12667 . . . . . . . 8 (𝑒 ∈ ℝ+𝑒 ∈ ℝ)
31 lelttr 10996 . . . . . . . . . . 11 ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ ∧ 𝑒 ∈ ℝ) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦) ∧ (𝑥𝐶𝑦) < 𝑒) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
32313expa 1116 . . . . . . . . . 10 (((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ 𝑒 ∈ ℝ) → ((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦) ∧ (𝑥𝐶𝑦) < 𝑒) → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3332expdimp 452 . . . . . . . . 9 ((((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ 𝑒 ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3433an32s 648 . . . . . . . 8 ((((((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ∈ ℝ ∧ (𝑥𝐶𝑦) ∈ ℝ) ∧ ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) ≤ (𝑥𝐶𝑦)) ∧ 𝑒 ∈ ℝ) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3529, 30, 34syl2an 595 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) ∧ 𝑒 ∈ ℝ+) → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
3635ex 412 . . . . . 6 (((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑒 ∈ ℝ+ → ((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)))
3736ralrimdva 3112 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈)) → (𝑒 ∈ ℝ+ → ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)))
3837impr 454 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
39 breq2 5074 . . . . 5 (𝑑 = 𝑒 → ((𝑥𝐶𝑦) < 𝑑 ↔ (𝑥𝐶𝑦) < 𝑒))
4039rspceaimv 3557 . . . 4 ((𝑒 ∈ ℝ+ ∧ ∀𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑒 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
414, 38, 40syl2anc 583 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑒 ∈ ℝ+)) → ∃𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
4241ralrimivva 3114 . 2 (𝑈 ∈ NrmCVec → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))
431, 16imsxmet 28955 . . 3 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
4410rexmet 23860 . . 3 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
45 nmcvcn.j . . . 4 𝐽 = (MetOpen‘𝐶)
46 nmcvcn.k . . . . 5 𝐾 = (topGen‘ran (,))
47 eqid 2738 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4810, 47tgioo 23865 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4946, 48eqtri 2766 . . . 4 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
5045, 49metcn 23605 . . 3 ((𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)) → (𝑁 ∈ (𝐽 Cn 𝐾) ↔ (𝑁:(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))))
5143, 44, 50sylancl 585 . 2 (𝑈 ∈ NrmCVec → (𝑁 ∈ (𝐽 Cn 𝐾) ↔ (𝑁:(BaseSet‘𝑈)⟶ℝ ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (BaseSet‘𝑈)((𝑥𝐶𝑦) < 𝑑 → ((𝑁𝑥)((abs ∘ − ) ↾ (ℝ × ℝ))(𝑁𝑦)) < 𝑒))))
523, 42, 51mpbir2and 709 1 (𝑈 ∈ NrmCVec → 𝑁 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070   × cxp 5578  ran crn 5581  cres 5582  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   < clt 10940  cle 10941  cmin 11135  -cneg 11136  +crp 12659  (,)cioo 13008  abscabs 14873  topGenctg 17065  ∞Metcxmet 20495  Metcmet 20496  MetOpencmopn 20500   Cn ccn 22283  NrmCVeccnv 28847   +𝑣 cpv 28848  BaseSetcba 28849   ·𝑠OLD cns 28850  normCVcnmcv 28853  IndMetcims 28854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-cnp 22287  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864
This theorem is referenced by:  nmcnc  28959
  Copyright terms: Public domain W3C validator