HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnconi Structured version   Visualization version   GIF version

Theorem lnconi 30395
Description: Lemma for lnopconi 30396 and lnfnconi 30417. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lncon.1 (𝑇𝐶𝑆 ∈ ℝ)
lncon.2 ((𝑇𝐶𝑦 ∈ ℋ) → (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦)))
lncon.3 (𝑇𝐶 ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
lncon.4 (𝑦 ∈ ℋ → (𝑁‘(𝑇𝑦)) ∈ ℝ)
lncon.5 ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤)𝑀(𝑇𝑥)))
Assertion
Ref Expression
lnconi (𝑇𝐶 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝑁   𝑦,𝑀   𝑤,𝑇,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦   𝑦,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑤)   𝑆(𝑧,𝑤)   𝑀(𝑥,𝑧,𝑤)

Proof of Theorem lnconi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lncon.1 . . 3 (𝑇𝐶𝑆 ∈ ℝ)
2 lncon.2 . . . 4 ((𝑇𝐶𝑦 ∈ ℋ) → (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦)))
32ralrimiva 3103 . . 3 (𝑇𝐶 → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦)))
4 oveq1 7282 . . . . . 6 (𝑥 = 𝑆 → (𝑥 · (norm𝑦)) = (𝑆 · (norm𝑦)))
54breq2d 5086 . . . . 5 (𝑥 = 𝑆 → ((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦))))
65ralbidv 3112 . . . 4 (𝑥 = 𝑆 → (∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦))))
76rspcev 3561 . . 3 ((𝑆 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
81, 3, 7syl2anc 584 . 2 (𝑇𝐶 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
9 arch 12230 . . . . . 6 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
109adantr 481 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
11 nnre 11980 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
12 simplll 772 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℝ)
13 simpllr 773 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → 𝑛 ∈ ℝ)
14 normcl 29487 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
1514adantl 482 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (norm𝑦) ∈ ℝ)
16 normge0 29488 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → 0 ≤ (norm𝑦))
1716adantl 482 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → 0 ≤ (norm𝑦))
18 ltle 11063 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑥 < 𝑛𝑥𝑛))
1918imp 407 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) → 𝑥𝑛)
2019adantr 481 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → 𝑥𝑛)
2112, 13, 15, 17, 20lemul1ad 11914 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (𝑥 · (norm𝑦)) ≤ (𝑛 · (norm𝑦)))
22 lncon.4 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → (𝑁‘(𝑇𝑦)) ∈ ℝ)
2322adantl 482 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (𝑁‘(𝑇𝑦)) ∈ ℝ)
24 simpll 764 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) → 𝑥 ∈ ℝ)
25 remulcl 10956 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (𝑥 · (norm𝑦)) ∈ ℝ)
2624, 14, 25syl2an 596 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (𝑥 · (norm𝑦)) ∈ ℝ)
27 simplr 766 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) → 𝑛 ∈ ℝ)
28 remulcl 10956 . . . . . . . . . . . . 13 ((𝑛 ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (𝑛 · (norm𝑦)) ∈ ℝ)
2927, 14, 28syl2an 596 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (𝑛 · (norm𝑦)) ∈ ℝ)
30 letr 11069 . . . . . . . . . . . 12 (((𝑁‘(𝑇𝑦)) ∈ ℝ ∧ (𝑥 · (norm𝑦)) ∈ ℝ ∧ (𝑛 · (norm𝑦)) ∈ ℝ) → (((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ∧ (𝑥 · (norm𝑦)) ≤ (𝑛 · (norm𝑦))) → (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3123, 26, 29, 30syl3anc 1370 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ∧ (𝑥 · (norm𝑦)) ≤ (𝑛 · (norm𝑦))) → (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3221, 31mpan2d 691 . . . . . . . . . 10 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → ((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) → (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3332ralimdva 3108 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) → (∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3433impancom 452 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) → (𝑥 < 𝑛 → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3534an32s 649 . . . . . . 7 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) ∧ 𝑛 ∈ ℝ) → (𝑥 < 𝑛 → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3611, 35sylan2 593 . . . . . 6 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) ∧ 𝑛 ∈ ℕ) → (𝑥 < 𝑛 → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3736reximdva 3203 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) → (∃𝑛 ∈ ℕ 𝑥 < 𝑛 → ∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3810, 37mpd 15 . . . 4 ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) → ∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)))
3938rexlimiva 3210 . . 3 (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) → ∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)))
40 simprr 770 . . . . . . . 8 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
41 simpll 764 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → 𝑛 ∈ ℕ)
4241nnrpd 12770 . . . . . . . 8 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → 𝑛 ∈ ℝ+)
4340, 42rpdivcld 12789 . . . . . . 7 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → (𝑧 / 𝑛) ∈ ℝ+)
44 simprr 770 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑤 ∈ ℋ)
45 simprll 776 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑥 ∈ ℋ)
46 hvsubcl 29379 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑤 𝑥) ∈ ℋ)
4744, 45, 46syl2anc 584 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑤 𝑥) ∈ ℋ)
48 2fveq3 6779 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 𝑥) → (𝑁‘(𝑇𝑦)) = (𝑁‘(𝑇‘(𝑤 𝑥))))
49 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑤 𝑥) → (norm𝑦) = (norm‘(𝑤 𝑥)))
5049oveq2d 7291 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 𝑥) → (𝑛 · (norm𝑦)) = (𝑛 · (norm‘(𝑤 𝑥))))
5148, 50breq12d 5087 . . . . . . . . . . . . . 14 (𝑦 = (𝑤 𝑥) → ((𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)) ↔ (𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥)))))
5251rspcva 3559 . . . . . . . . . . . . 13 (((𝑤 𝑥) ∈ ℋ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) → (𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))))
5347, 52sylan 580 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) → (𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))))
5453an32s 649 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))))
5548eleq1d 2823 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 𝑥) → ((𝑁‘(𝑇𝑦)) ∈ ℝ ↔ (𝑁‘(𝑇‘(𝑤 𝑥))) ∈ ℝ))
5655, 22vtoclga 3513 . . . . . . . . . . . . . 14 ((𝑤 𝑥) ∈ ℋ → (𝑁‘(𝑇‘(𝑤 𝑥))) ∈ ℝ)
5747, 56syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑁‘(𝑇‘(𝑤 𝑥))) ∈ ℝ)
5811adantr 481 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑛 ∈ ℝ)
59 normcl 29487 . . . . . . . . . . . . . . 15 ((𝑤 𝑥) ∈ ℋ → (norm‘(𝑤 𝑥)) ∈ ℝ)
6047, 59syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (norm‘(𝑤 𝑥)) ∈ ℝ)
61 remulcl 10956 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ (norm‘(𝑤 𝑥)) ∈ ℝ) → (𝑛 · (norm‘(𝑤 𝑥))) ∈ ℝ)
6258, 60, 61syl2anc 584 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑛 · (norm‘(𝑤 𝑥))) ∈ ℝ)
63 simprlr 777 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑧 ∈ ℝ+)
6463rpred 12772 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑧 ∈ ℝ)
65 lelttr 11065 . . . . . . . . . . . . 13 (((𝑁‘(𝑇‘(𝑤 𝑥))) ∈ ℝ ∧ (𝑛 · (norm‘(𝑤 𝑥))) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))) ∧ (𝑛 · (norm‘(𝑤 𝑥))) < 𝑧) → (𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧))
6657, 62, 64, 65syl3anc 1370 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (((𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))) ∧ (𝑛 · (norm‘(𝑤 𝑥))) < 𝑧) → (𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧))
6766adantlr 712 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (((𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))) ∧ (𝑛 · (norm‘(𝑤 𝑥))) < 𝑧) → (𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧))
6854, 67mpand 692 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((𝑛 · (norm‘(𝑤 𝑥))) < 𝑧 → (𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧))
69 nnrp 12741 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7069rpregt0d 12778 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
7170adantr 481 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
72 ltmuldiv2 11849 . . . . . . . . . . . 12 (((norm‘(𝑤 𝑥)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((𝑛 · (norm‘(𝑤 𝑥))) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < (𝑧 / 𝑛)))
7360, 64, 71, 72syl3anc 1370 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((𝑛 · (norm‘(𝑤 𝑥))) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < (𝑧 / 𝑛)))
7473adantlr 712 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((𝑛 · (norm‘(𝑤 𝑥))) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < (𝑧 / 𝑛)))
75 lncon.5 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤)𝑀(𝑇𝑥)))
7644, 45, 75syl2anc 584 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤)𝑀(𝑇𝑥)))
7776adantlr 712 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤)𝑀(𝑇𝑥)))
7877fveq2d 6778 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑁‘(𝑇‘(𝑤 𝑥))) = (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))))
7978breq1d 5084 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧 ↔ (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8068, 74, 793imtr3d 293 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((norm‘(𝑤 𝑥)) < (𝑧 / 𝑛) → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8180anassrs 468 . . . . . . . 8 ((((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑤 ∈ ℋ) → ((norm‘(𝑤 𝑥)) < (𝑧 / 𝑛) → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8281ralrimiva 3103 . . . . . . 7 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < (𝑧 / 𝑛) → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
83 breq2 5078 . . . . . . . 8 (𝑦 = (𝑧 / 𝑛) → ((norm‘(𝑤 𝑥)) < 𝑦 ↔ (norm‘(𝑤 𝑥)) < (𝑧 / 𝑛)))
8483rspceaimv 3565 . . . . . . 7 (((𝑧 / 𝑛) ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < (𝑧 / 𝑛) → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧)) → ∃𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8543, 82, 84syl2anc 584 . . . . . 6 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8685ralrimivva 3123 . . . . 5 ((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8786rexlimiva 3210 . . . 4 (∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
88 lncon.3 . . . 4 (𝑇𝐶 ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8987, 88sylibr 233 . . 3 (∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)) → 𝑇𝐶)
9039, 89syl 17 . 2 (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) → 𝑇𝐶)
918, 90impbii 208 1 (𝑇𝐶 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871   · cmul 10876   < clt 11009  cle 11010   / cdiv 11632  cn 11973  +crp 12730  chba 29281  normcno 29285   cmv 29287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-hfvadd 29362  ax-hv0cl 29365  ax-hfvmul 29367  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his3 29446  ax-his4 29447
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-hnorm 29330  df-hvsub 29333
This theorem is referenced by:  lnopconi  30396  lnfnconi  30417
  Copyright terms: Public domain W3C validator