HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnconi Structured version   Visualization version   GIF version

Theorem lnconi 32019
Description: Lemma for lnopconi 32020 and lnfnconi 32041. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lncon.1 (𝑇𝐶𝑆 ∈ ℝ)
lncon.2 ((𝑇𝐶𝑦 ∈ ℋ) → (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦)))
lncon.3 (𝑇𝐶 ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
lncon.4 (𝑦 ∈ ℋ → (𝑁‘(𝑇𝑦)) ∈ ℝ)
lncon.5 ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤)𝑀(𝑇𝑥)))
Assertion
Ref Expression
lnconi (𝑇𝐶 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝑁   𝑦,𝑀   𝑤,𝑇,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦   𝑦,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑤)   𝑆(𝑧,𝑤)   𝑀(𝑥,𝑧,𝑤)

Proof of Theorem lnconi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lncon.1 . . 3 (𝑇𝐶𝑆 ∈ ℝ)
2 lncon.2 . . . 4 ((𝑇𝐶𝑦 ∈ ℋ) → (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦)))
32ralrimiva 3133 . . 3 (𝑇𝐶 → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦)))
4 oveq1 7417 . . . . . 6 (𝑥 = 𝑆 → (𝑥 · (norm𝑦)) = (𝑆 · (norm𝑦)))
54breq2d 5136 . . . . 5 (𝑥 = 𝑆 → ((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦))))
65ralbidv 3164 . . . 4 (𝑥 = 𝑆 → (∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ↔ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦))))
76rspcev 3606 . . 3 ((𝑆 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑆 · (norm𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
81, 3, 7syl2anc 584 . 2 (𝑇𝐶 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
9 arch 12503 . . . . . 6 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
109adantr 480 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
11 nnre 12252 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
12 simplll 774 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℝ)
13 simpllr 775 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → 𝑛 ∈ ℝ)
14 normcl 31111 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
1514adantl 481 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (norm𝑦) ∈ ℝ)
16 normge0 31112 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → 0 ≤ (norm𝑦))
1716adantl 481 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → 0 ≤ (norm𝑦))
18 ltle 11328 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑥 < 𝑛𝑥𝑛))
1918imp 406 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) → 𝑥𝑛)
2019adantr 480 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → 𝑥𝑛)
2112, 13, 15, 17, 20lemul1ad 12186 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (𝑥 · (norm𝑦)) ≤ (𝑛 · (norm𝑦)))
22 lncon.4 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → (𝑁‘(𝑇𝑦)) ∈ ℝ)
2322adantl 481 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (𝑁‘(𝑇𝑦)) ∈ ℝ)
24 simpll 766 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) → 𝑥 ∈ ℝ)
25 remulcl 11219 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (𝑥 · (norm𝑦)) ∈ ℝ)
2624, 14, 25syl2an 596 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (𝑥 · (norm𝑦)) ∈ ℝ)
27 simplr 768 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) → 𝑛 ∈ ℝ)
28 remulcl 11219 . . . . . . . . . . . . 13 ((𝑛 ∈ ℝ ∧ (norm𝑦) ∈ ℝ) → (𝑛 · (norm𝑦)) ∈ ℝ)
2927, 14, 28syl2an 596 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (𝑛 · (norm𝑦)) ∈ ℝ)
30 letr 11334 . . . . . . . . . . . 12 (((𝑁‘(𝑇𝑦)) ∈ ℝ ∧ (𝑥 · (norm𝑦)) ∈ ℝ ∧ (𝑛 · (norm𝑦)) ∈ ℝ) → (((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ∧ (𝑥 · (norm𝑦)) ≤ (𝑛 · (norm𝑦))) → (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3123, 26, 29, 30syl3anc 1373 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → (((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) ∧ (𝑥 · (norm𝑦)) ≤ (𝑛 · (norm𝑦))) → (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3221, 31mpan2d 694 . . . . . . . . . 10 ((((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) ∧ 𝑦 ∈ ℋ) → ((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) → (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3332ralimdva 3153 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ 𝑥 < 𝑛) → (∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3433impancom 451 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) → (𝑥 < 𝑛 → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3534an32s 652 . . . . . . 7 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) ∧ 𝑛 ∈ ℝ) → (𝑥 < 𝑛 → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3611, 35sylan2 593 . . . . . 6 (((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) ∧ 𝑛 ∈ ℕ) → (𝑥 < 𝑛 → ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3736reximdva 3154 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) → (∃𝑛 ∈ ℕ 𝑥 < 𝑛 → ∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))))
3810, 37mpd 15 . . . 4 ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦))) → ∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)))
3938rexlimiva 3134 . . 3 (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) → ∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)))
40 simprr 772 . . . . . . . 8 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
41 simpll 766 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → 𝑛 ∈ ℕ)
4241nnrpd 13054 . . . . . . . 8 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → 𝑛 ∈ ℝ+)
4340, 42rpdivcld 13073 . . . . . . 7 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → (𝑧 / 𝑛) ∈ ℝ+)
44 simprr 772 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑤 ∈ ℋ)
45 simprll 778 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑥 ∈ ℋ)
46 hvsubcl 31003 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑤 𝑥) ∈ ℋ)
4744, 45, 46syl2anc 584 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑤 𝑥) ∈ ℋ)
48 2fveq3 6886 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 𝑥) → (𝑁‘(𝑇𝑦)) = (𝑁‘(𝑇‘(𝑤 𝑥))))
49 fveq2 6881 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑤 𝑥) → (norm𝑦) = (norm‘(𝑤 𝑥)))
5049oveq2d 7426 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 𝑥) → (𝑛 · (norm𝑦)) = (𝑛 · (norm‘(𝑤 𝑥))))
5148, 50breq12d 5137 . . . . . . . . . . . . . 14 (𝑦 = (𝑤 𝑥) → ((𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)) ↔ (𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥)))))
5251rspcva 3604 . . . . . . . . . . . . 13 (((𝑤 𝑥) ∈ ℋ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) → (𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))))
5347, 52sylan 580 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) → (𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))))
5453an32s 652 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))))
5548eleq1d 2820 . . . . . . . . . . . . . . 15 (𝑦 = (𝑤 𝑥) → ((𝑁‘(𝑇𝑦)) ∈ ℝ ↔ (𝑁‘(𝑇‘(𝑤 𝑥))) ∈ ℝ))
5655, 22vtoclga 3561 . . . . . . . . . . . . . 14 ((𝑤 𝑥) ∈ ℋ → (𝑁‘(𝑇‘(𝑤 𝑥))) ∈ ℝ)
5747, 56syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑁‘(𝑇‘(𝑤 𝑥))) ∈ ℝ)
5811adantr 480 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑛 ∈ ℝ)
59 normcl 31111 . . . . . . . . . . . . . . 15 ((𝑤 𝑥) ∈ ℋ → (norm‘(𝑤 𝑥)) ∈ ℝ)
6047, 59syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (norm‘(𝑤 𝑥)) ∈ ℝ)
61 remulcl 11219 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ (norm‘(𝑤 𝑥)) ∈ ℝ) → (𝑛 · (norm‘(𝑤 𝑥))) ∈ ℝ)
6258, 60, 61syl2anc 584 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑛 · (norm‘(𝑤 𝑥))) ∈ ℝ)
63 simprlr 779 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑧 ∈ ℝ+)
6463rpred 13056 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → 𝑧 ∈ ℝ)
65 lelttr 11330 . . . . . . . . . . . . 13 (((𝑁‘(𝑇‘(𝑤 𝑥))) ∈ ℝ ∧ (𝑛 · (norm‘(𝑤 𝑥))) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))) ∧ (𝑛 · (norm‘(𝑤 𝑥))) < 𝑧) → (𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧))
6657, 62, 64, 65syl3anc 1373 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (((𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))) ∧ (𝑛 · (norm‘(𝑤 𝑥))) < 𝑧) → (𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧))
6766adantlr 715 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (((𝑁‘(𝑇‘(𝑤 𝑥))) ≤ (𝑛 · (norm‘(𝑤 𝑥))) ∧ (𝑛 · (norm‘(𝑤 𝑥))) < 𝑧) → (𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧))
6854, 67mpand 695 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((𝑛 · (norm‘(𝑤 𝑥))) < 𝑧 → (𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧))
69 nnrp 13025 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7069rpregt0d 13062 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
7170adantr 480 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
72 ltmuldiv2 12121 . . . . . . . . . . . 12 (((norm‘(𝑤 𝑥)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((𝑛 · (norm‘(𝑤 𝑥))) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < (𝑧 / 𝑛)))
7360, 64, 71, 72syl3anc 1373 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((𝑛 · (norm‘(𝑤 𝑥))) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < (𝑧 / 𝑛)))
7473adantlr 715 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((𝑛 · (norm‘(𝑤 𝑥))) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < (𝑧 / 𝑛)))
75 lncon.5 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤)𝑀(𝑇𝑥)))
7644, 45, 75syl2anc 584 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤)𝑀(𝑇𝑥)))
7776adantlr 715 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤)𝑀(𝑇𝑥)))
7877fveq2d 6885 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → (𝑁‘(𝑇‘(𝑤 𝑥))) = (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))))
7978breq1d 5134 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((𝑁‘(𝑇‘(𝑤 𝑥))) < 𝑧 ↔ (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8068, 74, 793imtr3d 293 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+) ∧ 𝑤 ∈ ℋ)) → ((norm‘(𝑤 𝑥)) < (𝑧 / 𝑛) → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8180anassrs 467 . . . . . . . 8 ((((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑤 ∈ ℋ) → ((norm‘(𝑤 𝑥)) < (𝑧 / 𝑛) → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8281ralrimiva 3133 . . . . . . 7 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < (𝑧 / 𝑛) → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
83 breq2 5128 . . . . . . . 8 (𝑦 = (𝑧 / 𝑛) → ((norm‘(𝑤 𝑥)) < 𝑦 ↔ (norm‘(𝑤 𝑥)) < (𝑧 / 𝑛)))
8483rspceaimv 3612 . . . . . . 7 (((𝑧 / 𝑛) ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < (𝑧 / 𝑛) → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧)) → ∃𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8543, 82, 84syl2anc 584 . . . . . 6 (((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) ∧ (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8685ralrimivva 3188 . . . . 5 ((𝑛 ∈ ℕ ∧ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦))) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8786rexlimiva 3134 . . . 4 (∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)) → ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
88 lncon.3 . . . 4 (𝑇𝐶 ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (𝑁‘((𝑇𝑤)𝑀(𝑇𝑥))) < 𝑧))
8987, 88sylibr 234 . . 3 (∃𝑛 ∈ ℕ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑛 · (norm𝑦)) → 𝑇𝐶)
9039, 89syl 17 . 2 (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)) → 𝑇𝐶)
918, 90impbii 209 1 (𝑇𝐶 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134   · cmul 11139   < clt 11274  cle 11275   / cdiv 11899  cn 12245  +crp 13013  chba 30905  normcno 30909   cmv 30911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-hfvadd 30986  ax-hv0cl 30989  ax-hfvmul 30991  ax-hvmul0 30996  ax-hfi 31065  ax-his1 31068  ax-his3 31070  ax-his4 31071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-hnorm 30954  df-hvsub 30957
This theorem is referenced by:  lnopconi  32020  lnfnconi  32041
  Copyright terms: Public domain W3C validator