| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divlogrlim | Structured version Visualization version GIF version | ||
| Description: The inverse logarithm function converges to zero. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| divlogrlim | ⊢ (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore 13272 | . . . . . . . . 9 ⊢ (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ) | |
| 2 | eliooord 13302 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (1(,)+∞) → (1 < 𝑥 ∧ 𝑥 < +∞)) | |
| 3 | 2 | simpld 494 | . . . . . . . . 9 ⊢ (𝑥 ∈ (1(,)+∞) → 1 < 𝑥) |
| 4 | 1, 3 | rplogcld 26563 | . . . . . . . 8 ⊢ (𝑥 ∈ (1(,)+∞) → (log‘𝑥) ∈ ℝ+) |
| 5 | 4 | rprecred 12942 | . . . . . . 7 ⊢ (𝑥 ∈ (1(,)+∞) → (1 / (log‘𝑥)) ∈ ℝ) |
| 6 | 5 | recnd 11137 | . . . . . 6 ⊢ (𝑥 ∈ (1(,)+∞) → (1 / (log‘𝑥)) ∈ ℂ) |
| 7 | 6 | rgen 3049 | . . . . 5 ⊢ ∀𝑥 ∈ (1(,)+∞)(1 / (log‘𝑥)) ∈ ℂ |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (⊤ → ∀𝑥 ∈ (1(,)+∞)(1 / (log‘𝑥)) ∈ ℂ) |
| 9 | ioossre 13304 | . . . . 5 ⊢ (1(,)+∞) ⊆ ℝ | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (⊤ → (1(,)+∞) ⊆ ℝ) |
| 11 | 8, 10 | rlim0lt 15413 | . . 3 ⊢ (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+ ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦))) |
| 12 | 11 | mptru 1548 | . 2 ⊢ ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+ ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
| 13 | id 22 | . . . . 5 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ+) | |
| 14 | 13 | rprecred 12942 | . . . 4 ⊢ (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ) |
| 15 | 14 | reefcld 15992 | . . 3 ⊢ (𝑦 ∈ ℝ+ → (exp‘(1 / 𝑦)) ∈ ℝ) |
| 16 | 5 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) ∈ ℝ) |
| 17 | 1 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑥 ∈ ℝ) |
| 18 | 3 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 < 𝑥) |
| 19 | 17, 18 | rplogcld 26563 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ+) |
| 20 | 19 | rpreccld 12941 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) ∈ ℝ+) |
| 21 | 20 | rpge0d 12935 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 0 ≤ (1 / (log‘𝑥))) |
| 22 | 16, 21 | absidd 15327 | . . . . . 6 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (abs‘(1 / (log‘𝑥))) = (1 / (log‘𝑥))) |
| 23 | simpll 766 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑦 ∈ ℝ+) | |
| 24 | 4 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ+) |
| 25 | simpr 484 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(1 / 𝑦)) < 𝑥) | |
| 26 | 1rp 12891 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℝ+ | |
| 27 | 26 | a1i 11 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ∈ ℝ+) |
| 28 | 27 | rpred 12931 | . . . . . . . . . . . 12 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ∈ ℝ) |
| 29 | 28, 17, 18 | ltled 11258 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ≤ 𝑥) |
| 30 | 17, 27, 29 | rpgecld 12970 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑥 ∈ ℝ+) |
| 31 | 30 | reeflogd 26558 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(log‘𝑥)) = 𝑥) |
| 32 | 25, 31 | breqtrrd 5119 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥))) |
| 33 | 23 | rprecred 12942 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / 𝑦) ∈ ℝ) |
| 34 | 24 | rpred 12931 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ) |
| 35 | eflt 16023 | . . . . . . . . 9 ⊢ (((1 / 𝑦) ∈ ℝ ∧ (log‘𝑥) ∈ ℝ) → ((1 / 𝑦) < (log‘𝑥) ↔ (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥)))) | |
| 36 | 33, 34, 35 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → ((1 / 𝑦) < (log‘𝑥) ↔ (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥)))) |
| 37 | 32, 36 | mpbird 257 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / 𝑦) < (log‘𝑥)) |
| 38 | 23, 24, 37 | ltrec1d 12951 | . . . . . 6 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) < 𝑦) |
| 39 | 22, 38 | eqbrtrd 5113 | . . . . 5 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (abs‘(1 / (log‘𝑥))) < 𝑦) |
| 40 | 39 | ex 412 | . . . 4 ⊢ ((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) → ((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
| 41 | 40 | ralrimiva 3124 | . . 3 ⊢ (𝑦 ∈ ℝ+ → ∀𝑥 ∈ (1(,)+∞)((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
| 42 | breq1 5094 | . . . 4 ⊢ (𝑐 = (exp‘(1 / 𝑦)) → (𝑐 < 𝑥 ↔ (exp‘(1 / 𝑦)) < 𝑥)) | |
| 43 | 42 | rspceaimv 3583 | . . 3 ⊢ (((exp‘(1 / 𝑦)) ∈ ℝ ∧ ∀𝑥 ∈ (1(,)+∞)((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
| 44 | 15, 41, 43 | syl2anc 584 | . 2 ⊢ (𝑦 ∈ ℝ+ → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
| 45 | 12, 44 | mprgbir 3054 | 1 ⊢ (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ⊤wtru 1542 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3902 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ℝcr 11002 0cc0 11003 1c1 11004 +∞cpnf 11140 < clt 11143 / cdiv 11771 ℝ+crp 12887 (,)cioo 13242 abscabs 15138 ⇝𝑟 crli 15389 expce 15965 logclog 26488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ioc 13247 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-shft 14971 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-limsup 15375 df-clim 15392 df-rlim 15393 df-sum 15591 df-ef 15971 df-sin 15973 df-cos 15974 df-pi 15976 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 df-perf 23050 df-cn 23140 df-cnp 23141 df-haus 23228 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24233 df-ms 24234 df-tms 24235 df-cncf 24796 df-limc 25792 df-dv 25793 df-log 26490 |
| This theorem is referenced by: logno1 26570 vmalogdivsum2 27474 2vmadivsumlem 27476 selberg4lem1 27496 pntrlog2bndlem2 27514 pntrlog2bndlem4 27516 pntrlog2bndlem5 27517 |
| Copyright terms: Public domain | W3C validator |