Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divlogrlim | Structured version Visualization version GIF version |
Description: The inverse logarithm function converges to zero. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
divlogrlim | ⊢ (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 13091 | . . . . . . . . 9 ⊢ (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ) | |
2 | eliooord 13120 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (1(,)+∞) → (1 < 𝑥 ∧ 𝑥 < +∞)) | |
3 | 2 | simpld 494 | . . . . . . . . 9 ⊢ (𝑥 ∈ (1(,)+∞) → 1 < 𝑥) |
4 | 1, 3 | rplogcld 25765 | . . . . . . . 8 ⊢ (𝑥 ∈ (1(,)+∞) → (log‘𝑥) ∈ ℝ+) |
5 | 4 | rprecred 12765 | . . . . . . 7 ⊢ (𝑥 ∈ (1(,)+∞) → (1 / (log‘𝑥)) ∈ ℝ) |
6 | 5 | recnd 10987 | . . . . . 6 ⊢ (𝑥 ∈ (1(,)+∞) → (1 / (log‘𝑥)) ∈ ℂ) |
7 | 6 | rgen 3075 | . . . . 5 ⊢ ∀𝑥 ∈ (1(,)+∞)(1 / (log‘𝑥)) ∈ ℂ |
8 | 7 | a1i 11 | . . . 4 ⊢ (⊤ → ∀𝑥 ∈ (1(,)+∞)(1 / (log‘𝑥)) ∈ ℂ) |
9 | ioossre 13122 | . . . . 5 ⊢ (1(,)+∞) ⊆ ℝ | |
10 | 9 | a1i 11 | . . . 4 ⊢ (⊤ → (1(,)+∞) ⊆ ℝ) |
11 | 8, 10 | rlim0lt 15199 | . . 3 ⊢ (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+ ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦))) |
12 | 11 | mptru 1548 | . 2 ⊢ ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+ ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
13 | id 22 | . . . . 5 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ+) | |
14 | 13 | rprecred 12765 | . . . 4 ⊢ (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ) |
15 | 14 | reefcld 15778 | . . 3 ⊢ (𝑦 ∈ ℝ+ → (exp‘(1 / 𝑦)) ∈ ℝ) |
16 | 5 | ad2antlr 723 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) ∈ ℝ) |
17 | 1 | ad2antlr 723 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑥 ∈ ℝ) |
18 | 3 | ad2antlr 723 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 < 𝑥) |
19 | 17, 18 | rplogcld 25765 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ+) |
20 | 19 | rpreccld 12764 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) ∈ ℝ+) |
21 | 20 | rpge0d 12758 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 0 ≤ (1 / (log‘𝑥))) |
22 | 16, 21 | absidd 15115 | . . . . . 6 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (abs‘(1 / (log‘𝑥))) = (1 / (log‘𝑥))) |
23 | simpll 763 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑦 ∈ ℝ+) | |
24 | 4 | ad2antlr 723 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ+) |
25 | simpr 484 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(1 / 𝑦)) < 𝑥) | |
26 | 1rp 12716 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℝ+ | |
27 | 26 | a1i 11 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ∈ ℝ+) |
28 | 27 | rpred 12754 | . . . . . . . . . . . 12 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ∈ ℝ) |
29 | 28, 17, 18 | ltled 11106 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ≤ 𝑥) |
30 | 17, 27, 29 | rpgecld 12793 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑥 ∈ ℝ+) |
31 | 30 | reeflogd 25760 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(log‘𝑥)) = 𝑥) |
32 | 25, 31 | breqtrrd 5106 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥))) |
33 | 23 | rprecred 12765 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / 𝑦) ∈ ℝ) |
34 | 24 | rpred 12754 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ) |
35 | eflt 15807 | . . . . . . . . 9 ⊢ (((1 / 𝑦) ∈ ℝ ∧ (log‘𝑥) ∈ ℝ) → ((1 / 𝑦) < (log‘𝑥) ↔ (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥)))) | |
36 | 33, 34, 35 | syl2anc 583 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → ((1 / 𝑦) < (log‘𝑥) ↔ (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥)))) |
37 | 32, 36 | mpbird 256 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / 𝑦) < (log‘𝑥)) |
38 | 23, 24, 37 | ltrec1d 12774 | . . . . . 6 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) < 𝑦) |
39 | 22, 38 | eqbrtrd 5100 | . . . . 5 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (abs‘(1 / (log‘𝑥))) < 𝑦) |
40 | 39 | ex 412 | . . . 4 ⊢ ((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) → ((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
41 | 40 | ralrimiva 3109 | . . 3 ⊢ (𝑦 ∈ ℝ+ → ∀𝑥 ∈ (1(,)+∞)((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
42 | breq1 5081 | . . . 4 ⊢ (𝑐 = (exp‘(1 / 𝑦)) → (𝑐 < 𝑥 ↔ (exp‘(1 / 𝑦)) < 𝑥)) | |
43 | 42 | rspceaimv 3565 | . . 3 ⊢ (((exp‘(1 / 𝑦)) ∈ ℝ ∧ ∀𝑥 ∈ (1(,)+∞)((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
44 | 15, 41, 43 | syl2anc 583 | . 2 ⊢ (𝑦 ∈ ℝ+ → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
45 | 12, 44 | mprgbir 3080 | 1 ⊢ (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ⊤wtru 1542 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 ⊆ wss 3891 class class class wbr 5078 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 ℝcr 10854 0cc0 10855 1c1 10856 +∞cpnf 10990 < clt 10993 / cdiv 11615 ℝ+crp 12712 (,)cioo 13061 abscabs 14926 ⇝𝑟 crli 15175 expce 15752 logclog 25691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-addf 10934 ax-mulf 10935 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-er 8472 df-map 8591 df-pm 8592 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-fi 9131 df-sup 9162 df-inf 9163 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-q 12671 df-rp 12713 df-xneg 12830 df-xadd 12831 df-xmul 12832 df-ioo 13065 df-ioc 13066 df-ico 13067 df-icc 13068 df-fz 13222 df-fzo 13365 df-fl 13493 df-mod 13571 df-seq 13703 df-exp 13764 df-fac 13969 df-bc 13998 df-hash 14026 df-shft 14759 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-limsup 15161 df-clim 15178 df-rlim 15179 df-sum 15379 df-ef 15758 df-sin 15760 df-cos 15761 df-pi 15763 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-hom 16967 df-cco 16968 df-rest 17114 df-topn 17115 df-0g 17133 df-gsum 17134 df-topgen 17135 df-pt 17136 df-prds 17139 df-xrs 17194 df-qtop 17199 df-imas 17200 df-xps 17202 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-submnd 18412 df-mulg 18682 df-cntz 18904 df-cmn 19369 df-psmet 20570 df-xmet 20571 df-met 20572 df-bl 20573 df-mopn 20574 df-fbas 20575 df-fg 20576 df-cnfld 20579 df-top 22024 df-topon 22041 df-topsp 22063 df-bases 22077 df-cld 22151 df-ntr 22152 df-cls 22153 df-nei 22230 df-lp 22268 df-perf 22269 df-cn 22359 df-cnp 22360 df-haus 22447 df-tx 22694 df-hmeo 22887 df-fil 22978 df-fm 23070 df-flim 23071 df-flf 23072 df-xms 23454 df-ms 23455 df-tms 23456 df-cncf 24022 df-limc 25011 df-dv 25012 df-log 25693 |
This theorem is referenced by: logno1 25772 vmalogdivsum2 26667 2vmadivsumlem 26669 selberg4lem1 26689 pntrlog2bndlem2 26707 pntrlog2bndlem4 26709 pntrlog2bndlem5 26710 |
Copyright terms: Public domain | W3C validator |