![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divlogrlim | Structured version Visualization version GIF version |
Description: The inverse logarithm function converges to zero. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
divlogrlim | ⊢ (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 13354 | . . . . . . . . 9 ⊢ (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ) | |
2 | eliooord 13383 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (1(,)+∞) → (1 < 𝑥 ∧ 𝑥 < +∞)) | |
3 | 2 | simpld 496 | . . . . . . . . 9 ⊢ (𝑥 ∈ (1(,)+∞) → 1 < 𝑥) |
4 | 1, 3 | rplogcld 26137 | . . . . . . . 8 ⊢ (𝑥 ∈ (1(,)+∞) → (log‘𝑥) ∈ ℝ+) |
5 | 4 | rprecred 13027 | . . . . . . 7 ⊢ (𝑥 ∈ (1(,)+∞) → (1 / (log‘𝑥)) ∈ ℝ) |
6 | 5 | recnd 11242 | . . . . . 6 ⊢ (𝑥 ∈ (1(,)+∞) → (1 / (log‘𝑥)) ∈ ℂ) |
7 | 6 | rgen 3064 | . . . . 5 ⊢ ∀𝑥 ∈ (1(,)+∞)(1 / (log‘𝑥)) ∈ ℂ |
8 | 7 | a1i 11 | . . . 4 ⊢ (⊤ → ∀𝑥 ∈ (1(,)+∞)(1 / (log‘𝑥)) ∈ ℂ) |
9 | ioossre 13385 | . . . . 5 ⊢ (1(,)+∞) ⊆ ℝ | |
10 | 9 | a1i 11 | . . . 4 ⊢ (⊤ → (1(,)+∞) ⊆ ℝ) |
11 | 8, 10 | rlim0lt 15453 | . . 3 ⊢ (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+ ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦))) |
12 | 11 | mptru 1549 | . 2 ⊢ ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+ ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
13 | id 22 | . . . . 5 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ+) | |
14 | 13 | rprecred 13027 | . . . 4 ⊢ (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ) |
15 | 14 | reefcld 16031 | . . 3 ⊢ (𝑦 ∈ ℝ+ → (exp‘(1 / 𝑦)) ∈ ℝ) |
16 | 5 | ad2antlr 726 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) ∈ ℝ) |
17 | 1 | ad2antlr 726 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑥 ∈ ℝ) |
18 | 3 | ad2antlr 726 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 < 𝑥) |
19 | 17, 18 | rplogcld 26137 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ+) |
20 | 19 | rpreccld 13026 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) ∈ ℝ+) |
21 | 20 | rpge0d 13020 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 0 ≤ (1 / (log‘𝑥))) |
22 | 16, 21 | absidd 15369 | . . . . . 6 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (abs‘(1 / (log‘𝑥))) = (1 / (log‘𝑥))) |
23 | simpll 766 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑦 ∈ ℝ+) | |
24 | 4 | ad2antlr 726 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ+) |
25 | simpr 486 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(1 / 𝑦)) < 𝑥) | |
26 | 1rp 12978 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℝ+ | |
27 | 26 | a1i 11 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ∈ ℝ+) |
28 | 27 | rpred 13016 | . . . . . . . . . . . 12 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ∈ ℝ) |
29 | 28, 17, 18 | ltled 11362 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ≤ 𝑥) |
30 | 17, 27, 29 | rpgecld 13055 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑥 ∈ ℝ+) |
31 | 30 | reeflogd 26132 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(log‘𝑥)) = 𝑥) |
32 | 25, 31 | breqtrrd 5177 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥))) |
33 | 23 | rprecred 13027 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / 𝑦) ∈ ℝ) |
34 | 24 | rpred 13016 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ) |
35 | eflt 16060 | . . . . . . . . 9 ⊢ (((1 / 𝑦) ∈ ℝ ∧ (log‘𝑥) ∈ ℝ) → ((1 / 𝑦) < (log‘𝑥) ↔ (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥)))) | |
36 | 33, 34, 35 | syl2anc 585 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → ((1 / 𝑦) < (log‘𝑥) ↔ (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥)))) |
37 | 32, 36 | mpbird 257 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / 𝑦) < (log‘𝑥)) |
38 | 23, 24, 37 | ltrec1d 13036 | . . . . . 6 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) < 𝑦) |
39 | 22, 38 | eqbrtrd 5171 | . . . . 5 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (abs‘(1 / (log‘𝑥))) < 𝑦) |
40 | 39 | ex 414 | . . . 4 ⊢ ((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) → ((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
41 | 40 | ralrimiva 3147 | . . 3 ⊢ (𝑦 ∈ ℝ+ → ∀𝑥 ∈ (1(,)+∞)((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
42 | breq1 5152 | . . . 4 ⊢ (𝑐 = (exp‘(1 / 𝑦)) → (𝑐 < 𝑥 ↔ (exp‘(1 / 𝑦)) < 𝑥)) | |
43 | 42 | rspceaimv 3618 | . . 3 ⊢ (((exp‘(1 / 𝑦)) ∈ ℝ ∧ ∀𝑥 ∈ (1(,)+∞)((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
44 | 15, 41, 43 | syl2anc 585 | . 2 ⊢ (𝑦 ∈ ℝ+ → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
45 | 12, 44 | mprgbir 3069 | 1 ⊢ (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ⊤wtru 1543 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 ⊆ wss 3949 class class class wbr 5149 ↦ cmpt 5232 ‘cfv 6544 (class class class)co 7409 ℂcc 11108 ℝcr 11109 0cc0 11110 1c1 11111 +∞cpnf 11245 < clt 11248 / cdiv 11871 ℝ+crp 12974 (,)cioo 13324 abscabs 15181 ⇝𝑟 crli 15429 expce 16005 logclog 26063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-map 8822 df-pm 8823 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-fi 9406 df-sup 9437 df-inf 9438 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ioo 13328 df-ioc 13329 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-fl 13757 df-mod 13835 df-seq 13967 df-exp 14028 df-fac 14234 df-bc 14263 df-hash 14291 df-shft 15014 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-limsup 15415 df-clim 15432 df-rlim 15433 df-sum 15633 df-ef 16011 df-sin 16013 df-cos 16014 df-pi 16016 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17368 df-topn 17369 df-0g 17387 df-gsum 17388 df-topgen 17389 df-pt 17390 df-prds 17393 df-xrs 17448 df-qtop 17453 df-imas 17454 df-xps 17456 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-mulg 18951 df-cntz 19181 df-cmn 19650 df-psmet 20936 df-xmet 20937 df-met 20938 df-bl 20939 df-mopn 20940 df-fbas 20941 df-fg 20942 df-cnfld 20945 df-top 22396 df-topon 22413 df-topsp 22435 df-bases 22449 df-cld 22523 df-ntr 22524 df-cls 22525 df-nei 22602 df-lp 22640 df-perf 22641 df-cn 22731 df-cnp 22732 df-haus 22819 df-tx 23066 df-hmeo 23259 df-fil 23350 df-fm 23442 df-flim 23443 df-flf 23444 df-xms 23826 df-ms 23827 df-tms 23828 df-cncf 24394 df-limc 25383 df-dv 25384 df-log 26065 |
This theorem is referenced by: logno1 26144 vmalogdivsum2 27041 2vmadivsumlem 27043 selberg4lem1 27063 pntrlog2bndlem2 27081 pntrlog2bndlem4 27083 pntrlog2bndlem5 27084 |
Copyright terms: Public domain | W3C validator |