| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divlogrlim | Structured version Visualization version GIF version | ||
| Description: The inverse logarithm function converges to zero. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| divlogrlim | ⊢ (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore 13392 | . . . . . . . . 9 ⊢ (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ) | |
| 2 | eliooord 13422 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (1(,)+∞) → (1 < 𝑥 ∧ 𝑥 < +∞)) | |
| 3 | 2 | simpld 494 | . . . . . . . . 9 ⊢ (𝑥 ∈ (1(,)+∞) → 1 < 𝑥) |
| 4 | 1, 3 | rplogcld 26590 | . . . . . . . 8 ⊢ (𝑥 ∈ (1(,)+∞) → (log‘𝑥) ∈ ℝ+) |
| 5 | 4 | rprecred 13062 | . . . . . . 7 ⊢ (𝑥 ∈ (1(,)+∞) → (1 / (log‘𝑥)) ∈ ℝ) |
| 6 | 5 | recnd 11263 | . . . . . 6 ⊢ (𝑥 ∈ (1(,)+∞) → (1 / (log‘𝑥)) ∈ ℂ) |
| 7 | 6 | rgen 3053 | . . . . 5 ⊢ ∀𝑥 ∈ (1(,)+∞)(1 / (log‘𝑥)) ∈ ℂ |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (⊤ → ∀𝑥 ∈ (1(,)+∞)(1 / (log‘𝑥)) ∈ ℂ) |
| 9 | ioossre 13424 | . . . . 5 ⊢ (1(,)+∞) ⊆ ℝ | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (⊤ → (1(,)+∞) ⊆ ℝ) |
| 11 | 8, 10 | rlim0lt 15525 | . . 3 ⊢ (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+ ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦))) |
| 12 | 11 | mptru 1547 | . 2 ⊢ ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+ ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
| 13 | id 22 | . . . . 5 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ+) | |
| 14 | 13 | rprecred 13062 | . . . 4 ⊢ (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ) |
| 15 | 14 | reefcld 16104 | . . 3 ⊢ (𝑦 ∈ ℝ+ → (exp‘(1 / 𝑦)) ∈ ℝ) |
| 16 | 5 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) ∈ ℝ) |
| 17 | 1 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑥 ∈ ℝ) |
| 18 | 3 | ad2antlr 727 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 < 𝑥) |
| 19 | 17, 18 | rplogcld 26590 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ+) |
| 20 | 19 | rpreccld 13061 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) ∈ ℝ+) |
| 21 | 20 | rpge0d 13055 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 0 ≤ (1 / (log‘𝑥))) |
| 22 | 16, 21 | absidd 15441 | . . . . . 6 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (abs‘(1 / (log‘𝑥))) = (1 / (log‘𝑥))) |
| 23 | simpll 766 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑦 ∈ ℝ+) | |
| 24 | 4 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ+) |
| 25 | simpr 484 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(1 / 𝑦)) < 𝑥) | |
| 26 | 1rp 13012 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℝ+ | |
| 27 | 26 | a1i 11 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ∈ ℝ+) |
| 28 | 27 | rpred 13051 | . . . . . . . . . . . 12 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ∈ ℝ) |
| 29 | 28, 17, 18 | ltled 11383 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 1 ≤ 𝑥) |
| 30 | 17, 27, 29 | rpgecld 13090 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → 𝑥 ∈ ℝ+) |
| 31 | 30 | reeflogd 26585 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(log‘𝑥)) = 𝑥) |
| 32 | 25, 31 | breqtrrd 5147 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥))) |
| 33 | 23 | rprecred 13062 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / 𝑦) ∈ ℝ) |
| 34 | 24 | rpred 13051 | . . . . . . . . 9 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (log‘𝑥) ∈ ℝ) |
| 35 | eflt 16135 | . . . . . . . . 9 ⊢ (((1 / 𝑦) ∈ ℝ ∧ (log‘𝑥) ∈ ℝ) → ((1 / 𝑦) < (log‘𝑥) ↔ (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥)))) | |
| 36 | 33, 34, 35 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → ((1 / 𝑦) < (log‘𝑥) ↔ (exp‘(1 / 𝑦)) < (exp‘(log‘𝑥)))) |
| 37 | 32, 36 | mpbird 257 | . . . . . . 7 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / 𝑦) < (log‘𝑥)) |
| 38 | 23, 24, 37 | ltrec1d 13071 | . . . . . 6 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (1 / (log‘𝑥)) < 𝑦) |
| 39 | 22, 38 | eqbrtrd 5141 | . . . . 5 ⊢ (((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (exp‘(1 / 𝑦)) < 𝑥) → (abs‘(1 / (log‘𝑥))) < 𝑦) |
| 40 | 39 | ex 412 | . . . 4 ⊢ ((𝑦 ∈ ℝ+ ∧ 𝑥 ∈ (1(,)+∞)) → ((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
| 41 | 40 | ralrimiva 3132 | . . 3 ⊢ (𝑦 ∈ ℝ+ → ∀𝑥 ∈ (1(,)+∞)((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
| 42 | breq1 5122 | . . . 4 ⊢ (𝑐 = (exp‘(1 / 𝑦)) → (𝑐 < 𝑥 ↔ (exp‘(1 / 𝑦)) < 𝑥)) | |
| 43 | 42 | rspceaimv 3607 | . . 3 ⊢ (((exp‘(1 / 𝑦)) ∈ ℝ ∧ ∀𝑥 ∈ (1(,)+∞)((exp‘(1 / 𝑦)) < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
| 44 | 15, 41, 43 | syl2anc 584 | . 2 ⊢ (𝑦 ∈ ℝ+ → ∃𝑐 ∈ ℝ ∀𝑥 ∈ (1(,)+∞)(𝑐 < 𝑥 → (abs‘(1 / (log‘𝑥))) < 𝑦)) |
| 45 | 12, 44 | mprgbir 3058 | 1 ⊢ (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ⊤wtru 1541 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 0cc0 11129 1c1 11130 +∞cpnf 11266 < clt 11269 / cdiv 11894 ℝ+crp 13008 (,)cioo 13362 abscabs 15253 ⇝𝑟 crli 15501 expce 16077 logclog 26515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-shft 15086 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-ef 16083 df-sin 16085 df-cos 16086 df-pi 16088 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cn 23165 df-cnp 23166 df-haus 23253 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-limc 25819 df-dv 25820 df-log 26517 |
| This theorem is referenced by: logno1 26597 vmalogdivsum2 27501 2vmadivsumlem 27503 selberg4lem1 27523 pntrlog2bndlem2 27541 pntrlog2bndlem4 27543 pntrlog2bndlem5 27544 |
| Copyright terms: Public domain | W3C validator |