MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxplim Structured version   Visualization version   GIF version

Theorem cxplim 25535
Description: A power to a negative exponent goes to zero as the base becomes large. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Mario Carneiro, 18-May-2016.)
Assertion
Ref Expression
cxplim (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ (1 / (𝑛𝑐𝐴))) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem cxplim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpre 12384 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
21adantl 484 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
3 rpge0 12389 . . . . . 6 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
43adantl 484 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → 0 ≤ 𝑥)
5 rpre 12384 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
65renegcld 11053 . . . . . . 7 (𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
76adantr 483 . . . . . 6 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → -𝐴 ∈ ℝ)
8 rpcn 12386 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
9 rpne0 12392 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ≠ 0)
108, 9negne0d 10981 . . . . . . 7 (𝐴 ∈ ℝ+ → -𝐴 ≠ 0)
1110adantr 483 . . . . . 6 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → -𝐴 ≠ 0)
127, 11rereccld 11453 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → (1 / -𝐴) ∈ ℝ)
132, 4, 12recxpcld 25292 . . . 4 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → (𝑥𝑐(1 / -𝐴)) ∈ ℝ)
14 simprl 769 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑛 ∈ ℝ+)
155ad2antrr 724 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝐴 ∈ ℝ)
1614, 15rpcxpcld 25301 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐𝐴) ∈ ℝ+)
1716rpreccld 12428 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / (𝑛𝑐𝐴)) ∈ ℝ+)
1817rprege0d 12425 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / (𝑛𝑐𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝑛𝑐𝐴))))
19 absid 14641 . . . . . . . 8 (((1 / (𝑛𝑐𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝑛𝑐𝐴))) → (abs‘(1 / (𝑛𝑐𝐴))) = (1 / (𝑛𝑐𝐴)))
2018, 19syl 17 . . . . . . 7 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (abs‘(1 / (𝑛𝑐𝐴))) = (1 / (𝑛𝑐𝐴)))
21 simplr 767 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑥 ∈ ℝ+)
22 simprr 771 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑥𝑐(1 / -𝐴)) < 𝑛)
23 rpreccl 12402 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
2423ad2antrr 724 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝐴) ∈ ℝ+)
2524rpcnd 12420 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝐴) ∈ ℂ)
2621, 25cxprecd 25300 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / 𝑥)↑𝑐(1 / 𝐴)) = (1 / (𝑥𝑐(1 / 𝐴))))
27 rpcn 12386 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
2827ad2antlr 725 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑥 ∈ ℂ)
29 rpne0 12392 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ≠ 0)
3029ad2antlr 725 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑥 ≠ 0)
3128, 30, 25cxpnegd 25284 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑥𝑐-(1 / 𝐴)) = (1 / (𝑥𝑐(1 / 𝐴))))
32 1cnd 10622 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 1 ∈ ℂ)
338ad2antrr 724 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝐴 ∈ ℂ)
349ad2antrr 724 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝐴 ≠ 0)
3532, 33, 34divneg2d 11416 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → -(1 / 𝐴) = (1 / -𝐴))
3635oveq2d 7158 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑥𝑐-(1 / 𝐴)) = (𝑥𝑐(1 / -𝐴)))
3726, 31, 363eqtr2d 2862 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / 𝑥)↑𝑐(1 / 𝐴)) = (𝑥𝑐(1 / -𝐴)))
3833, 34recidd 11397 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝐴 · (1 / 𝐴)) = 1)
3938oveq2d 7158 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐(𝐴 · (1 / 𝐴))) = (𝑛𝑐1))
4014, 15, 25cxpmuld 25305 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐(𝐴 · (1 / 𝐴))) = ((𝑛𝑐𝐴)↑𝑐(1 / 𝐴)))
4114rpcnd 12420 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑛 ∈ ℂ)
4241cxp1d 25275 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐1) = 𝑛)
4339, 40, 423eqtr3d 2864 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((𝑛𝑐𝐴)↑𝑐(1 / 𝐴)) = 𝑛)
4422, 37, 433brtr4d 5084 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / 𝑥)↑𝑐(1 / 𝐴)) < ((𝑛𝑐𝐴)↑𝑐(1 / 𝐴)))
45 rpreccl 12402 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
4645ad2antlr 725 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝑥) ∈ ℝ+)
4746rpred 12418 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝑥) ∈ ℝ)
4846rpge0d 12422 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 0 ≤ (1 / 𝑥))
4916rpred 12418 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐𝐴) ∈ ℝ)
5016rpge0d 12422 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 0 ≤ (𝑛𝑐𝐴))
5147, 48, 49, 50, 24cxplt2d 25295 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / 𝑥) < (𝑛𝑐𝐴) ↔ ((1 / 𝑥)↑𝑐(1 / 𝐴)) < ((𝑛𝑐𝐴)↑𝑐(1 / 𝐴))))
5244, 51mpbird 259 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝑥) < (𝑛𝑐𝐴))
5321, 16, 52ltrec1d 12438 . . . . . . 7 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / (𝑛𝑐𝐴)) < 𝑥)
5420, 53eqbrtrd 5074 . . . . . 6 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥)
5554expr 459 . . . . 5 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((𝑥𝑐(1 / -𝐴)) < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
5655ralrimiva 3182 . . . 4 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → ∀𝑛 ∈ ℝ+ ((𝑥𝑐(1 / -𝐴)) < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
57 breq1 5055 . . . . 5 (𝑦 = (𝑥𝑐(1 / -𝐴)) → (𝑦 < 𝑛 ↔ (𝑥𝑐(1 / -𝐴)) < 𝑛))
5857rspceaimv 3620 . . . 4 (((𝑥𝑐(1 / -𝐴)) ∈ ℝ ∧ ∀𝑛 ∈ ℝ+ ((𝑥𝑐(1 / -𝐴)) < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
5913, 56, 58syl2anc 586 . . 3 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
6059ralrimiva 3182 . 2 (𝐴 ∈ ℝ+ → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
61 id 22 . . . . . . 7 (𝑛 ∈ ℝ+𝑛 ∈ ℝ+)
62 rpcxpcl 25245 . . . . . . 7 ((𝑛 ∈ ℝ+𝐴 ∈ ℝ) → (𝑛𝑐𝐴) ∈ ℝ+)
6361, 5, 62syl2anr 598 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑛𝑐𝐴) ∈ ℝ+)
6463rpreccld 12428 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (1 / (𝑛𝑐𝐴)) ∈ ℝ+)
6564rpcnd 12420 . . . 4 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (1 / (𝑛𝑐𝐴)) ∈ ℂ)
6665ralrimiva 3182 . . 3 (𝐴 ∈ ℝ+ → ∀𝑛 ∈ ℝ+ (1 / (𝑛𝑐𝐴)) ∈ ℂ)
67 rpssre 12383 . . . 4 + ⊆ ℝ
6867a1i 11 . . 3 (𝐴 ∈ ℝ+ → ℝ+ ⊆ ℝ)
6966, 68rlim0lt 14851 . 2 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℝ+ ↦ (1 / (𝑛𝑐𝐴))) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥)))
7060, 69mpbird 259 1 (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ (1 / (𝑛𝑐𝐴))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  wss 3924   class class class wbr 5052  cmpt 5132  cfv 6341  (class class class)co 7142  cc 10521  cr 10522  0cc0 10523  1c1 10524   · cmul 10528   < clt 10661  cle 10662  -cneg 10857   / cdiv 11283  +crp 12376  abscabs 14578  𝑟 crli 14827  𝑐ccxp 25125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-inf2 9090  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601  ax-addf 10602  ax-mulf 10603
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-se 5501  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7395  df-om 7567  df-1st 7675  df-2nd 7676  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8820  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-card 9354  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-9 11694  df-n0 11885  df-z 11969  df-dec 12086  df-uz 12231  df-q 12336  df-rp 12377  df-xneg 12494  df-xadd 12495  df-xmul 12496  df-ioo 12729  df-ioc 12730  df-ico 12731  df-icc 12732  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14411  df-cj 14443  df-re 14444  df-im 14445  df-sqrt 14579  df-abs 14580  df-limsup 14813  df-clim 14830  df-rlim 14831  df-sum 15028  df-ef 15406  df-sin 15408  df-cos 15409  df-pi 15411  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-ress 16474  df-plusg 16561  df-mulr 16562  df-starv 16563  df-sca 16564  df-vsca 16565  df-ip 16566  df-tset 16567  df-ple 16568  df-ds 16570  df-unif 16571  df-hom 16572  df-cco 16573  df-rest 16679  df-topn 16680  df-0g 16698  df-gsum 16699  df-topgen 16700  df-pt 16701  df-prds 16704  df-xrs 16758  df-qtop 16763  df-imas 16764  df-xps 16766  df-mre 16840  df-mrc 16841  df-acs 16843  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-submnd 17940  df-mulg 18208  df-cntz 18430  df-cmn 18891  df-psmet 20520  df-xmet 20521  df-met 20522  df-bl 20523  df-mopn 20524  df-fbas 20525  df-fg 20526  df-cnfld 20529  df-top 21485  df-topon 21502  df-topsp 21524  df-bases 21537  df-cld 21610  df-ntr 21611  df-cls 21612  df-nei 21689  df-lp 21727  df-perf 21728  df-cn 21818  df-cnp 21819  df-haus 21906  df-tx 22153  df-hmeo 22346  df-fil 22437  df-fm 22529  df-flim 22530  df-flf 22531  df-xms 22913  df-ms 22914  df-tms 22915  df-cncf 23469  df-limc 24449  df-dv 24450  df-log 25126  df-cxp 25127
This theorem is referenced by:  sqrtlim  25536  signsplypnf  31827
  Copyright terms: Public domain W3C validator