Step | Hyp | Ref
| Expression |
1 | | rpre 12923 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
2 | 1 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) → 𝑥 ∈ ℝ) |
3 | | rpge0 12928 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ 0 ≤ 𝑥) |
4 | 3 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) → 0 ≤ 𝑥) |
5 | | rpre 12923 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℝ) |
6 | 5 | renegcld 11582 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ+
→ -𝐴 ∈
ℝ) |
7 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) → -𝐴 ∈ ℝ) |
8 | | rpcn 12925 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℂ) |
9 | | rpne0 12931 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ≠
0) |
10 | 8, 9 | negne0d 11510 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ+
→ -𝐴 ≠
0) |
11 | 10 | adantr 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) → -𝐴 ≠ 0) |
12 | 7, 11 | rereccld 11982 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) → (1 / -𝐴) ∈ ℝ) |
13 | 2, 4, 12 | recxpcld 26078 |
. . . 4
⊢ ((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) → (𝑥↑𝑐(1 / -𝐴)) ∈
ℝ) |
14 | | simprl 769 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → 𝑛 ∈ ℝ+) |
15 | 5 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → 𝐴 ∈ ℝ) |
16 | 14, 15 | rpcxpcld 26087 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (𝑛↑𝑐𝐴) ∈
ℝ+) |
17 | 16 | rpreccld 12967 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (1 / (𝑛↑𝑐𝐴)) ∈
ℝ+) |
18 | 17 | rprege0d 12964 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → ((1 / (𝑛↑𝑐𝐴)) ∈ ℝ ∧ 0 ≤
(1 / (𝑛↑𝑐𝐴)))) |
19 | | absid 15181 |
. . . . . . . 8
⊢ (((1 /
(𝑛↑𝑐𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝑛↑𝑐𝐴))) → (abs‘(1 /
(𝑛↑𝑐𝐴))) = (1 / (𝑛↑𝑐𝐴))) |
20 | 18, 19 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (abs‘(1 / (𝑛↑𝑐𝐴))) = (1 / (𝑛↑𝑐𝐴))) |
21 | | simplr 767 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → 𝑥 ∈ ℝ+) |
22 | | simprr 771 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (𝑥↑𝑐(1 / -𝐴)) < 𝑛) |
23 | | rpreccl 12941 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℝ+
→ (1 / 𝐴) ∈
ℝ+) |
24 | 23 | ad2antrr 724 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (1 / 𝐴) ∈
ℝ+) |
25 | 24 | rpcnd 12959 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (1 / 𝐴) ∈ ℂ) |
26 | 21, 25 | cxprecd 26086 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → ((1 / 𝑥)↑𝑐(1 /
𝐴)) = (1 / (𝑥↑𝑐(1 /
𝐴)))) |
27 | | rpcn 12925 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
28 | 27 | ad2antlr 725 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → 𝑥 ∈ ℂ) |
29 | | rpne0 12931 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) |
30 | 29 | ad2antlr 725 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → 𝑥 ≠ 0) |
31 | 28, 30, 25 | cxpnegd 26070 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (𝑥↑𝑐-(1 / 𝐴)) = (1 / (𝑥↑𝑐(1 / 𝐴)))) |
32 | | 1cnd 11150 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → 1 ∈
ℂ) |
33 | 8 | ad2antrr 724 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → 𝐴 ∈ ℂ) |
34 | 9 | ad2antrr 724 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → 𝐴 ≠ 0) |
35 | 32, 33, 34 | divneg2d 11945 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → -(1 / 𝐴) = (1 / -𝐴)) |
36 | 35 | oveq2d 7373 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (𝑥↑𝑐-(1 / 𝐴)) = (𝑥↑𝑐(1 / -𝐴))) |
37 | 26, 31, 36 | 3eqtr2d 2782 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → ((1 / 𝑥)↑𝑐(1 /
𝐴)) = (𝑥↑𝑐(1 / -𝐴))) |
38 | 33, 34 | recidd 11926 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (𝐴 · (1 / 𝐴)) = 1) |
39 | 38 | oveq2d 7373 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (𝑛↑𝑐(𝐴 · (1 / 𝐴))) = (𝑛↑𝑐1)) |
40 | 14, 15, 25 | cxpmuld 26091 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (𝑛↑𝑐(𝐴 · (1 / 𝐴))) = ((𝑛↑𝑐𝐴)↑𝑐(1 / 𝐴))) |
41 | 14 | rpcnd 12959 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → 𝑛 ∈ ℂ) |
42 | 41 | cxp1d 26061 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (𝑛↑𝑐1) = 𝑛) |
43 | 39, 40, 42 | 3eqtr3d 2784 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → ((𝑛↑𝑐𝐴)↑𝑐(1 / 𝐴)) = 𝑛) |
44 | 22, 37, 43 | 3brtr4d 5137 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → ((1 / 𝑥)↑𝑐(1 /
𝐴)) < ((𝑛↑𝑐𝐴)↑𝑐(1 /
𝐴))) |
45 | | rpreccl 12941 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ (1 / 𝑥) ∈
ℝ+) |
46 | 45 | ad2antlr 725 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (1 / 𝑥) ∈
ℝ+) |
47 | 46 | rpred 12957 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (1 / 𝑥) ∈
ℝ) |
48 | 46 | rpge0d 12961 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → 0 ≤ (1 / 𝑥)) |
49 | 16 | rpred 12957 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (𝑛↑𝑐𝐴) ∈ ℝ) |
50 | 16 | rpge0d 12961 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → 0 ≤ (𝑛↑𝑐𝐴)) |
51 | 47, 48, 49, 50, 24 | cxplt2d 26081 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → ((1 / 𝑥) < (𝑛↑𝑐𝐴) ↔ ((1 / 𝑥)↑𝑐(1 / 𝐴)) < ((𝑛↑𝑐𝐴)↑𝑐(1 / 𝐴)))) |
52 | 44, 51 | mpbird 256 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (1 / 𝑥) < (𝑛↑𝑐𝐴)) |
53 | 21, 16, 52 | ltrec1d 12977 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (1 / (𝑛↑𝑐𝐴)) < 𝑥) |
54 | 20, 53 | eqbrtrd 5127 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥↑𝑐(1 /
-𝐴)) < 𝑛)) → (abs‘(1 / (𝑛↑𝑐𝐴))) < 𝑥) |
55 | 54 | expr 457 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) ∧ 𝑛 ∈ ℝ+) → ((𝑥↑𝑐(1 /
-𝐴)) < 𝑛 → (abs‘(1 / (𝑛↑𝑐𝐴))) < 𝑥)) |
56 | 55 | ralrimiva 3143 |
. . . 4
⊢ ((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) → ∀𝑛 ∈ ℝ+ ((𝑥↑𝑐(1 /
-𝐴)) < 𝑛 → (abs‘(1 / (𝑛↑𝑐𝐴))) < 𝑥)) |
57 | | breq1 5108 |
. . . . 5
⊢ (𝑦 = (𝑥↑𝑐(1 / -𝐴)) → (𝑦 < 𝑛 ↔ (𝑥↑𝑐(1 / -𝐴)) < 𝑛)) |
58 | 57 | rspceaimv 3585 |
. . . 4
⊢ (((𝑥↑𝑐(1 /
-𝐴)) ∈ ℝ ∧
∀𝑛 ∈
ℝ+ ((𝑥↑𝑐(1 / -𝐴)) < 𝑛 → (abs‘(1 / (𝑛↑𝑐𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛↑𝑐𝐴))) < 𝑥)) |
59 | 13, 56, 58 | syl2anc 584 |
. . 3
⊢ ((𝐴 ∈ ℝ+
∧ 𝑥 ∈
ℝ+) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛↑𝑐𝐴))) < 𝑥)) |
60 | 59 | ralrimiva 3143 |
. 2
⊢ (𝐴 ∈ ℝ+
→ ∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛↑𝑐𝐴))) < 𝑥)) |
61 | | id 22 |
. . . . . . 7
⊢ (𝑛 ∈ ℝ+
→ 𝑛 ∈
ℝ+) |
62 | | rpcxpcl 26031 |
. . . . . . 7
⊢ ((𝑛 ∈ ℝ+
∧ 𝐴 ∈ ℝ)
→ (𝑛↑𝑐𝐴) ∈
ℝ+) |
63 | 61, 5, 62 | syl2anr 597 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → (𝑛↑𝑐𝐴) ∈
ℝ+) |
64 | 63 | rpreccld 12967 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → (1 / (𝑛↑𝑐𝐴)) ∈
ℝ+) |
65 | 64 | rpcnd 12959 |
. . . 4
⊢ ((𝐴 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → (1 / (𝑛↑𝑐𝐴)) ∈ ℂ) |
66 | 65 | ralrimiva 3143 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ ∀𝑛 ∈
ℝ+ (1 / (𝑛↑𝑐𝐴)) ∈ ℂ) |
67 | | rpssre 12922 |
. . . 4
⊢
ℝ+ ⊆ ℝ |
68 | 67 | a1i 11 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ ℝ+ ⊆ ℝ) |
69 | 66, 68 | rlim0lt 15391 |
. 2
⊢ (𝐴 ∈ ℝ+
→ ((𝑛 ∈
ℝ+ ↦ (1 / (𝑛↑𝑐𝐴))) ⇝𝑟 0 ↔
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛↑𝑐𝐴))) < 𝑥))) |
70 | 60, 69 | mpbird 256 |
1
⊢ (𝐴 ∈ ℝ+
→ (𝑛 ∈
ℝ+ ↦ (1 / (𝑛↑𝑐𝐴))) ⇝𝑟
0) |