MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxplim Structured version   Visualization version   GIF version

Theorem cxplim 26932
Description: A power to a negative exponent goes to zero as the base becomes large. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Mario Carneiro, 18-May-2016.)
Assertion
Ref Expression
cxplim (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ (1 / (𝑛𝑐𝐴))) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem cxplim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpre 13015 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
21adantl 481 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
3 rpge0 13020 . . . . . 6 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
43adantl 481 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → 0 ≤ 𝑥)
5 rpre 13015 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
65renegcld 11662 . . . . . . 7 (𝐴 ∈ ℝ+ → -𝐴 ∈ ℝ)
76adantr 480 . . . . . 6 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → -𝐴 ∈ ℝ)
8 rpcn 13017 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
9 rpne0 13023 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ≠ 0)
108, 9negne0d 11590 . . . . . . 7 (𝐴 ∈ ℝ+ → -𝐴 ≠ 0)
1110adantr 480 . . . . . 6 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → -𝐴 ≠ 0)
127, 11rereccld 12066 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → (1 / -𝐴) ∈ ℝ)
132, 4, 12recxpcld 26682 . . . 4 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → (𝑥𝑐(1 / -𝐴)) ∈ ℝ)
14 simprl 770 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑛 ∈ ℝ+)
155ad2antrr 726 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝐴 ∈ ℝ)
1614, 15rpcxpcld 26692 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐𝐴) ∈ ℝ+)
1716rpreccld 13059 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / (𝑛𝑐𝐴)) ∈ ℝ+)
1817rprege0d 13056 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / (𝑛𝑐𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝑛𝑐𝐴))))
19 absid 15313 . . . . . . . 8 (((1 / (𝑛𝑐𝐴)) ∈ ℝ ∧ 0 ≤ (1 / (𝑛𝑐𝐴))) → (abs‘(1 / (𝑛𝑐𝐴))) = (1 / (𝑛𝑐𝐴)))
2018, 19syl 17 . . . . . . 7 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (abs‘(1 / (𝑛𝑐𝐴))) = (1 / (𝑛𝑐𝐴)))
21 simplr 768 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑥 ∈ ℝ+)
22 simprr 772 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑥𝑐(1 / -𝐴)) < 𝑛)
23 rpreccl 13033 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
2423ad2antrr 726 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝐴) ∈ ℝ+)
2524rpcnd 13051 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝐴) ∈ ℂ)
2621, 25cxprecd 26691 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / 𝑥)↑𝑐(1 / 𝐴)) = (1 / (𝑥𝑐(1 / 𝐴))))
27 rpcn 13017 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
2827ad2antlr 727 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑥 ∈ ℂ)
29 rpne0 13023 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ≠ 0)
3029ad2antlr 727 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑥 ≠ 0)
3128, 30, 25cxpnegd 26674 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑥𝑐-(1 / 𝐴)) = (1 / (𝑥𝑐(1 / 𝐴))))
32 1cnd 11228 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 1 ∈ ℂ)
338ad2antrr 726 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝐴 ∈ ℂ)
349ad2antrr 726 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝐴 ≠ 0)
3532, 33, 34divneg2d 12029 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → -(1 / 𝐴) = (1 / -𝐴))
3635oveq2d 7419 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑥𝑐-(1 / 𝐴)) = (𝑥𝑐(1 / -𝐴)))
3726, 31, 363eqtr2d 2776 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / 𝑥)↑𝑐(1 / 𝐴)) = (𝑥𝑐(1 / -𝐴)))
3833, 34recidd 12010 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝐴 · (1 / 𝐴)) = 1)
3938oveq2d 7419 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐(𝐴 · (1 / 𝐴))) = (𝑛𝑐1))
4014, 15, 25cxpmuld 26696 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐(𝐴 · (1 / 𝐴))) = ((𝑛𝑐𝐴)↑𝑐(1 / 𝐴)))
4114rpcnd 13051 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 𝑛 ∈ ℂ)
4241cxp1d 26665 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐1) = 𝑛)
4339, 40, 423eqtr3d 2778 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((𝑛𝑐𝐴)↑𝑐(1 / 𝐴)) = 𝑛)
4422, 37, 433brtr4d 5151 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / 𝑥)↑𝑐(1 / 𝐴)) < ((𝑛𝑐𝐴)↑𝑐(1 / 𝐴)))
45 rpreccl 13033 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
4645ad2antlr 727 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝑥) ∈ ℝ+)
4746rpred 13049 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝑥) ∈ ℝ)
4846rpge0d 13053 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 0 ≤ (1 / 𝑥))
4916rpred 13049 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (𝑛𝑐𝐴) ∈ ℝ)
5016rpge0d 13053 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → 0 ≤ (𝑛𝑐𝐴))
5147, 48, 49, 50, 24cxplt2d 26685 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → ((1 / 𝑥) < (𝑛𝑐𝐴) ↔ ((1 / 𝑥)↑𝑐(1 / 𝐴)) < ((𝑛𝑐𝐴)↑𝑐(1 / 𝐴))))
5244, 51mpbird 257 . . . . . . . 8 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / 𝑥) < (𝑛𝑐𝐴))
5321, 16, 52ltrec1d 13069 . . . . . . 7 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (1 / (𝑛𝑐𝐴)) < 𝑥)
5420, 53eqbrtrd 5141 . . . . . 6 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ (𝑥𝑐(1 / -𝐴)) < 𝑛)) → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥)
5554expr 456 . . . . 5 (((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → ((𝑥𝑐(1 / -𝐴)) < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
5655ralrimiva 3132 . . . 4 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → ∀𝑛 ∈ ℝ+ ((𝑥𝑐(1 / -𝐴)) < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
57 breq1 5122 . . . . 5 (𝑦 = (𝑥𝑐(1 / -𝐴)) → (𝑦 < 𝑛 ↔ (𝑥𝑐(1 / -𝐴)) < 𝑛))
5857rspceaimv 3607 . . . 4 (((𝑥𝑐(1 / -𝐴)) ∈ ℝ ∧ ∀𝑛 ∈ ℝ+ ((𝑥𝑐(1 / -𝐴)) < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
5913, 56, 58syl2anc 584 . . 3 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
6059ralrimiva 3132 . 2 (𝐴 ∈ ℝ+ → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥))
61 id 22 . . . . . . 7 (𝑛 ∈ ℝ+𝑛 ∈ ℝ+)
62 rpcxpcl 26635 . . . . . . 7 ((𝑛 ∈ ℝ+𝐴 ∈ ℝ) → (𝑛𝑐𝐴) ∈ ℝ+)
6361, 5, 62syl2anr 597 . . . . . 6 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑛𝑐𝐴) ∈ ℝ+)
6463rpreccld 13059 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (1 / (𝑛𝑐𝐴)) ∈ ℝ+)
6564rpcnd 13051 . . . 4 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ+) → (1 / (𝑛𝑐𝐴)) ∈ ℂ)
6665ralrimiva 3132 . . 3 (𝐴 ∈ ℝ+ → ∀𝑛 ∈ ℝ+ (1 / (𝑛𝑐𝐴)) ∈ ℂ)
67 rpssre 13014 . . . 4 + ⊆ ℝ
6867a1i 11 . . 3 (𝐴 ∈ ℝ+ → ℝ+ ⊆ ℝ)
6966, 68rlim0lt 15523 . 2 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℝ+ ↦ (1 / (𝑛𝑐𝐴))) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(1 / (𝑛𝑐𝐴))) < 𝑥)))
7060, 69mpbird 257 1 (𝐴 ∈ ℝ+ → (𝑛 ∈ ℝ+ ↦ (1 / (𝑛𝑐𝐴))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  wss 3926   class class class wbr 5119  cmpt 5201  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   · cmul 11132   < clt 11267  cle 11268  -cneg 11465   / cdiv 11892  +crp 13006  abscabs 15251  𝑟 crli 15499  𝑐ccxp 26514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-sin 16083  df-cos 16084  df-pi 16086  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818  df-log 26515  df-cxp 26516
This theorem is referenced by:  sqrtlim  26933  signsplypnf  34528
  Copyright terms: Public domain W3C validator