HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  0cnfn Structured version   Visualization version   GIF version

Theorem 0cnfn 31924
Description: The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
0cnfn ( ℋ × {0}) ∈ ContFn

Proof of Theorem 0cnfn
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 11107 . . 3 0 ∈ ℂ
21fconst6 6714 . 2 ( ℋ × {0}): ℋ⟶ℂ
3 1rp 12897 . . . 4 1 ∈ ℝ+
4 c0ex 11109 . . . . . . . . . . . . 13 0 ∈ V
54fvconst2 7140 . . . . . . . . . . . 12 (𝑤 ∈ ℋ → (( ℋ × {0})‘𝑤) = 0)
64fvconst2 7140 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (( ℋ × {0})‘𝑥) = 0)
75, 6oveqan12rd 7369 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = (0 − 0))
87adantlr 715 . . . . . . . . . 10 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = (0 − 0))
9 0m0e0 12243 . . . . . . . . . 10 (0 − 0) = 0
108, 9eqtrdi 2780 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = 0)
1110fveq2d 6826 . . . . . . . 8 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) = (abs‘0))
12 abs0 15192 . . . . . . . 8 (abs‘0) = 0
1311, 12eqtrdi 2780 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) = 0)
14 rpgt0 12906 . . . . . . . 8 (𝑦 ∈ ℝ+ → 0 < 𝑦)
1514ad2antlr 727 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → 0 < 𝑦)
1613, 15eqbrtrd 5114 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)
1716a1d 25 . . . . 5 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((norm‘(𝑤 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))
1817ralrimiva 3121 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))
19 breq2 5096 . . . . 5 (𝑧 = 1 → ((norm‘(𝑤 𝑥)) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < 1))
2019rspceaimv 3583 . . . 4 ((1 ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))
213, 18, 20sylancr 587 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))
2221rgen2 3169 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)
23 elcnfn 31826 . 2 (( ℋ × {0}) ∈ ContFn ↔ (( ℋ × {0}): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)))
242, 22, 23mpbir2an 711 1 ( ℋ × {0}) ∈ ContFn
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {csn 4577   class class class wbr 5092   × cxp 5617  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   < clt 11149  cmin 11347  +crp 12893  abscabs 15141  chba 30863  normcno 30867   cmv 30869  ContFnccnfn 30897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-hilex 30943
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-cnfn 31791
This theorem is referenced by:  nmcfnex  31997  nmcfnlb  31998  riesz4  32008  riesz1  32009
  Copyright terms: Public domain W3C validator