HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  0cnfn Structured version   Visualization version   GIF version

Theorem 0cnfn 30243
Description: The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
0cnfn ( ℋ × {0}) ∈ ContFn

Proof of Theorem 0cnfn
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10898 . . 3 0 ∈ ℂ
21fconst6 6648 . 2 ( ℋ × {0}): ℋ⟶ℂ
3 1rp 12663 . . . 4 1 ∈ ℝ+
4 c0ex 10900 . . . . . . . . . . . . 13 0 ∈ V
54fvconst2 7061 . . . . . . . . . . . 12 (𝑤 ∈ ℋ → (( ℋ × {0})‘𝑤) = 0)
64fvconst2 7061 . . . . . . . . . . . 12 (𝑥 ∈ ℋ → (( ℋ × {0})‘𝑥) = 0)
75, 6oveqan12rd 7275 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = (0 − 0))
87adantlr 711 . . . . . . . . . 10 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = (0 − 0))
9 0m0e0 12023 . . . . . . . . . 10 (0 − 0) = 0
108, 9eqtrdi 2795 . . . . . . . . 9 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = 0)
1110fveq2d 6760 . . . . . . . 8 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) = (abs‘0))
12 abs0 14925 . . . . . . . 8 (abs‘0) = 0
1311, 12eqtrdi 2795 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) = 0)
14 rpgt0 12671 . . . . . . . 8 (𝑦 ∈ ℝ+ → 0 < 𝑦)
1514ad2antlr 723 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → 0 < 𝑦)
1613, 15eqbrtrd 5092 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)
1716a1d 25 . . . . 5 (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((norm‘(𝑤 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))
1817ralrimiva 3107 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))
19 breq2 5074 . . . . 5 (𝑧 = 1 → ((norm‘(𝑤 𝑥)) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < 1))
2019rspceaimv 3557 . . . 4 ((1 ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))
213, 18, 20sylancr 586 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))
2221rgen2 3126 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)
23 elcnfn 30145 . 2 (( ℋ × {0}) ∈ ContFn ↔ (( ℋ × {0}): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)))
242, 22, 23mpbir2an 707 1 ( ℋ × {0}) ∈ ContFn
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {csn 4558   class class class wbr 5070   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   < clt 10940  cmin 11135  +crp 12659  abscabs 14873  chba 29182  normcno 29186   cmv 29188  ContFnccnfn 29216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-hilex 29262
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-cnfn 30110
This theorem is referenced by:  nmcfnex  30316  nmcfnlb  30317  riesz4  30327  riesz1  30328
  Copyright terms: Public domain W3C validator