| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > 0cnfn | Structured version Visualization version GIF version | ||
| Description: The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0cnfn | ⊢ ( ℋ × {0}) ∈ ContFn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11142 | . . 3 ⊢ 0 ∈ ℂ | |
| 2 | 1 | fconst6 6732 | . 2 ⊢ ( ℋ × {0}): ℋ⟶ℂ |
| 3 | 1rp 12931 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 4 | c0ex 11144 | . . . . . . . . . . . . 13 ⊢ 0 ∈ V | |
| 5 | 4 | fvconst2 7160 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℋ → (( ℋ × {0})‘𝑤) = 0) |
| 6 | 4 | fvconst2 7160 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℋ → (( ℋ × {0})‘𝑥) = 0) |
| 7 | 5, 6 | oveqan12rd 7389 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = (0 − 0)) |
| 8 | 7 | adantlr 715 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = (0 − 0)) |
| 9 | 0m0e0 12277 | . . . . . . . . . 10 ⊢ (0 − 0) = 0 | |
| 10 | 8, 9 | eqtrdi 2780 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥)) = 0) |
| 11 | 10 | fveq2d 6844 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) = (abs‘0)) |
| 12 | abs0 15227 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
| 13 | 11, 12 | eqtrdi 2780 | . . . . . . 7 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) = 0) |
| 14 | rpgt0 12940 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ+ → 0 < 𝑦) | |
| 15 | 14 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → 0 < 𝑦) |
| 16 | 13, 15 | eqbrtrd 5124 | . . . . . 6 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦) |
| 17 | 16 | a1d 25 | . . . . 5 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)) |
| 18 | 17 | ralrimiva 3125 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)) |
| 19 | breq2 5106 | . . . . 5 ⊢ (𝑧 = 1 → ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 ↔ (normℎ‘(𝑤 −ℎ 𝑥)) < 1)) | |
| 20 | 19 | rspceaimv 3591 | . . . 4 ⊢ ((1 ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 1 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)) |
| 21 | 3, 18, 20 | sylancr 587 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦)) |
| 22 | 21 | rgen2 3175 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦) |
| 23 | elcnfn 31784 | . 2 ⊢ (( ℋ × {0}) ∈ ContFn ↔ (( ℋ × {0}): ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((( ℋ × {0})‘𝑤) − (( ℋ × {0})‘𝑥))) < 𝑦))) | |
| 24 | 2, 22, 23 | mpbir2an 711 | 1 ⊢ ( ℋ × {0}) ∈ ContFn |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {csn 4585 class class class wbr 5102 × cxp 5629 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 < clt 11184 − cmin 11381 ℝ+crp 12927 abscabs 15176 ℋchba 30821 normℎcno 30825 −ℎ cmv 30827 ContFnccnfn 30855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-hilex 30901 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-cnfn 31749 |
| This theorem is referenced by: nmcfnex 31955 nmcfnlb 31956 riesz4 31966 riesz1 31967 |
| Copyright terms: Public domain | W3C validator |