Step | Hyp | Ref
| Expression |
1 | | dnicn.1 |
. . 3
β’ π = (π₯ β β β¦
(absβ((ββ(π₯ + (1 / 2))) β π₯))) |
2 | 1 | dnif 35666 |
. 2
β’ π:ββΆβ |
3 | | simpr 484 |
. . . 4
β’ ((π¦ β β β§ π β β+)
β π β
β+) |
4 | | simplr 766 |
. . . . . . . . . . 11
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β π§ β β) |
5 | 1, 4 | dnicld2 35665 |
. . . . . . . . . 10
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β (πβπ§) β β) |
6 | | simplll 772 |
. . . . . . . . . . 11
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β π¦ β β) |
7 | 1, 6 | dnicld2 35665 |
. . . . . . . . . 10
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β (πβπ¦) β β) |
8 | 5, 7 | resubcld 11649 |
. . . . . . . . 9
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β ((πβπ§) β (πβπ¦)) β β) |
9 | 8 | recnd 11249 |
. . . . . . . 8
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β ((πβπ§) β (πβπ¦)) β β) |
10 | 9 | abscld 15390 |
. . . . . . 7
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β (absβ((πβπ§) β (πβπ¦))) β β) |
11 | 4, 6 | resubcld 11649 |
. . . . . . . . 9
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β (π§ β π¦) β β) |
12 | 11 | recnd 11249 |
. . . . . . . 8
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β (π§ β π¦) β β) |
13 | 12 | abscld 15390 |
. . . . . . 7
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β (absβ(π§ β π¦)) β β) |
14 | 3 | ad2antrr 723 |
. . . . . . . 8
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β π β β+) |
15 | 14 | rpred 13023 |
. . . . . . 7
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β π β β) |
16 | 1, 6, 4 | dnibnd 35683 |
. . . . . . 7
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β (absβ((πβπ§) β (πβπ¦))) β€ (absβ(π§ β π¦))) |
17 | | simpr 484 |
. . . . . . 7
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β (absβ(π§ β π¦)) < π) |
18 | 10, 13, 15, 16, 17 | lelttrd 11379 |
. . . . . 6
β’ ((((π¦ β β β§ π β β+)
β§ π§ β β)
β§ (absβ(π§ β
π¦)) < π) β (absβ((πβπ§) β (πβπ¦))) < π) |
19 | 18 | ex 412 |
. . . . 5
β’ (((π¦ β β β§ π β β+)
β§ π§ β β)
β ((absβ(π§
β π¦)) < π β (absβ((πβπ§) β (πβπ¦))) < π)) |
20 | 19 | ralrimiva 3145 |
. . . 4
β’ ((π¦ β β β§ π β β+)
β βπ§ β
β ((absβ(π§
β π¦)) < π β (absβ((πβπ§) β (πβπ¦))) < π)) |
21 | | breq2 5152 |
. . . . 5
β’ (π = π β ((absβ(π§ β π¦)) < π β (absβ(π§ β π¦)) < π)) |
22 | 21 | rspceaimv 3617 |
. . . 4
β’ ((π β β+
β§ βπ§ β
β ((absβ(π§
β π¦)) < π β (absβ((πβπ§) β (πβπ¦))) < π)) β βπ β β+ βπ§ β β
((absβ(π§ β
π¦)) < π β (absβ((πβπ§) β (πβπ¦))) < π)) |
23 | 3, 20, 22 | syl2anc 583 |
. . 3
β’ ((π¦ β β β§ π β β+)
β βπ β
β+ βπ§ β β ((absβ(π§ β π¦)) < π β (absβ((πβπ§) β (πβπ¦))) < π)) |
24 | 23 | rgen2 3196 |
. 2
β’
βπ¦ β
β βπ β
β+ βπ β β+ βπ§ β β
((absβ(π§ β
π¦)) < π β (absβ((πβπ§) β (πβπ¦))) < π) |
25 | | ax-resscn 11173 |
. . 3
β’ β
β β |
26 | | elcncf2 24643 |
. . 3
β’ ((β
β β β§ β β β) β (π β (ββcnββ) β (π:ββΆβ β§ βπ¦ β β βπ β β+
βπ β
β+ βπ§ β β ((absβ(π§ β π¦)) < π β (absβ((πβπ§) β (πβπ¦))) < π)))) |
27 | 25, 25, 26 | mp2an 689 |
. 2
β’ (π β (ββcnββ) β (π:ββΆβ β§ βπ¦ β β βπ β β+
βπ β
β+ βπ§ β β ((absβ(π§ β π¦)) < π β (absβ((πβπ§) β (πβπ¦))) < π))) |
28 | 2, 24, 27 | mpbir2an 708 |
1
β’ π β (ββcnββ) |