| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnicn | Structured version Visualization version GIF version | ||
| Description: The "distance to nearest integer" function is continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| Ref | Expression |
|---|---|
| dnicn.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| Ref | Expression |
|---|---|
| dnicn | ⊢ 𝑇 ∈ (ℝ–cn→ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnicn.1 | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 2 | 1 | dnif 36462 | . 2 ⊢ 𝑇:ℝ⟶ℝ |
| 3 | simpr 484 | . . . 4 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+) | |
| 4 | simplr 768 | . . . . . . . . . . 11 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑧 ∈ ℝ) | |
| 5 | 1, 4 | dnicld2 36461 | . . . . . . . . . 10 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑇‘𝑧) ∈ ℝ) |
| 6 | simplll 774 | . . . . . . . . . . 11 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑦 ∈ ℝ) | |
| 7 | 1, 6 | dnicld2 36461 | . . . . . . . . . 10 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑇‘𝑦) ∈ ℝ) |
| 8 | 5, 7 | resubcld 11606 | . . . . . . . . 9 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → ((𝑇‘𝑧) − (𝑇‘𝑦)) ∈ ℝ) |
| 9 | 8 | recnd 11202 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → ((𝑇‘𝑧) − (𝑇‘𝑦)) ∈ ℂ) |
| 10 | 9 | abscld 15405 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) ∈ ℝ) |
| 11 | 4, 6 | resubcld 11606 | . . . . . . . . 9 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑧 − 𝑦) ∈ ℝ) |
| 12 | 11 | recnd 11202 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑧 − 𝑦) ∈ ℂ) |
| 13 | 12 | abscld 15405 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘(𝑧 − 𝑦)) ∈ ℝ) |
| 14 | 3 | ad2antrr 726 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑒 ∈ ℝ+) |
| 15 | 14 | rpred 12995 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑒 ∈ ℝ) |
| 16 | 1, 6, 4 | dnibnd 36479 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) ≤ (abs‘(𝑧 − 𝑦))) |
| 17 | simpr 484 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘(𝑧 − 𝑦)) < 𝑒) | |
| 18 | 10, 13, 15, 16, 17 | lelttrd 11332 | . . . . . 6 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒) |
| 19 | 18 | ex 412 | . . . . 5 ⊢ (((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
| 20 | 19 | ralrimiva 3125 | . . . 4 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
| 21 | breq2 5111 | . . . . 5 ⊢ (𝑑 = 𝑒 → ((abs‘(𝑧 − 𝑦)) < 𝑑 ↔ (abs‘(𝑧 − 𝑦)) < 𝑒)) | |
| 22 | 21 | rspceaimv 3594 | . . . 4 ⊢ ((𝑒 ∈ ℝ+ ∧ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) → ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
| 23 | 3, 20, 22 | syl2anc 584 | . . 3 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
| 24 | 23 | rgen2 3177 | . 2 ⊢ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒) |
| 25 | ax-resscn 11125 | . . 3 ⊢ ℝ ⊆ ℂ | |
| 26 | elcncf2 24783 | . . 3 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑇 ∈ (ℝ–cn→ℝ) ↔ (𝑇:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)))) | |
| 27 | 25, 25, 26 | mp2an 692 | . 2 ⊢ (𝑇 ∈ (ℝ–cn→ℝ) ↔ (𝑇:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒))) |
| 28 | 2, 24, 27 | mpbir2an 711 | 1 ⊢ 𝑇 ∈ (ℝ–cn→ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 1c1 11069 + caddc 11071 < clt 11208 − cmin 11405 / cdiv 11835 2c2 12241 ℝ+crp 12951 ⌊cfl 13752 abscabs 15200 –cn→ccncf 24769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fl 13754 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-cncf 24771 |
| This theorem is referenced by: knoppcnlem10 36490 |
| Copyright terms: Public domain | W3C validator |