![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnicn | Structured version Visualization version GIF version |
Description: The "distance to nearest integer" function is continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
dnicn.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
Ref | Expression |
---|---|
dnicn | ⊢ 𝑇 ∈ (ℝ–cn→ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnicn.1 | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
2 | 1 | dnif 36077 | . 2 ⊢ 𝑇:ℝ⟶ℝ |
3 | simpr 483 | . . . 4 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+) | |
4 | simplr 767 | . . . . . . . . . . 11 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑧 ∈ ℝ) | |
5 | 1, 4 | dnicld2 36076 | . . . . . . . . . 10 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑇‘𝑧) ∈ ℝ) |
6 | simplll 773 | . . . . . . . . . . 11 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑦 ∈ ℝ) | |
7 | 1, 6 | dnicld2 36076 | . . . . . . . . . 10 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑇‘𝑦) ∈ ℝ) |
8 | 5, 7 | resubcld 11674 | . . . . . . . . 9 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → ((𝑇‘𝑧) − (𝑇‘𝑦)) ∈ ℝ) |
9 | 8 | recnd 11274 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → ((𝑇‘𝑧) − (𝑇‘𝑦)) ∈ ℂ) |
10 | 9 | abscld 15419 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) ∈ ℝ) |
11 | 4, 6 | resubcld 11674 | . . . . . . . . 9 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑧 − 𝑦) ∈ ℝ) |
12 | 11 | recnd 11274 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑧 − 𝑦) ∈ ℂ) |
13 | 12 | abscld 15419 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘(𝑧 − 𝑦)) ∈ ℝ) |
14 | 3 | ad2antrr 724 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑒 ∈ ℝ+) |
15 | 14 | rpred 13051 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑒 ∈ ℝ) |
16 | 1, 6, 4 | dnibnd 36094 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) ≤ (abs‘(𝑧 − 𝑦))) |
17 | simpr 483 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘(𝑧 − 𝑦)) < 𝑒) | |
18 | 10, 13, 15, 16, 17 | lelttrd 11404 | . . . . . 6 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒) |
19 | 18 | ex 411 | . . . . 5 ⊢ (((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
20 | 19 | ralrimiva 3135 | . . . 4 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
21 | breq2 5153 | . . . . 5 ⊢ (𝑑 = 𝑒 → ((abs‘(𝑧 − 𝑦)) < 𝑑 ↔ (abs‘(𝑧 − 𝑦)) < 𝑒)) | |
22 | 21 | rspceaimv 3612 | . . . 4 ⊢ ((𝑒 ∈ ℝ+ ∧ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) → ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
23 | 3, 20, 22 | syl2anc 582 | . . 3 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
24 | 23 | rgen2 3187 | . 2 ⊢ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒) |
25 | ax-resscn 11197 | . . 3 ⊢ ℝ ⊆ ℂ | |
26 | elcncf2 24854 | . . 3 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑇 ∈ (ℝ–cn→ℝ) ↔ (𝑇:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)))) | |
27 | 25, 25, 26 | mp2an 690 | . 2 ⊢ (𝑇 ∈ (ℝ–cn→ℝ) ↔ (𝑇:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒))) |
28 | 2, 24, 27 | mpbir2an 709 | 1 ⊢ 𝑇 ∈ (ℝ–cn→ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 ⊆ wss 3944 class class class wbr 5149 ↦ cmpt 5232 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 ℝcr 11139 1c1 11141 + caddc 11143 < clt 11280 − cmin 11476 / cdiv 11903 2c2 12300 ℝ+crp 13009 ⌊cfl 13791 abscabs 15217 –cn→ccncf 24840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-fl 13793 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-cncf 24842 |
This theorem is referenced by: knoppcnlem10 36105 |
Copyright terms: Public domain | W3C validator |