Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnicn | Structured version Visualization version GIF version |
Description: The "distance to nearest integer" function is continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
dnicn.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
Ref | Expression |
---|---|
dnicn | ⊢ 𝑇 ∈ (ℝ–cn→ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnicn.1 | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
2 | 1 | dnif 34712 | . 2 ⊢ 𝑇:ℝ⟶ℝ |
3 | simpr 485 | . . . 4 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+) | |
4 | simplr 766 | . . . . . . . . . . 11 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑧 ∈ ℝ) | |
5 | 1, 4 | dnicld2 34711 | . . . . . . . . . 10 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑇‘𝑧) ∈ ℝ) |
6 | simplll 772 | . . . . . . . . . . 11 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑦 ∈ ℝ) | |
7 | 1, 6 | dnicld2 34711 | . . . . . . . . . 10 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑇‘𝑦) ∈ ℝ) |
8 | 5, 7 | resubcld 11476 | . . . . . . . . 9 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → ((𝑇‘𝑧) − (𝑇‘𝑦)) ∈ ℝ) |
9 | 8 | recnd 11076 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → ((𝑇‘𝑧) − (𝑇‘𝑦)) ∈ ℂ) |
10 | 9 | abscld 15220 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) ∈ ℝ) |
11 | 4, 6 | resubcld 11476 | . . . . . . . . 9 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑧 − 𝑦) ∈ ℝ) |
12 | 11 | recnd 11076 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑧 − 𝑦) ∈ ℂ) |
13 | 12 | abscld 15220 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘(𝑧 − 𝑦)) ∈ ℝ) |
14 | 3 | ad2antrr 723 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑒 ∈ ℝ+) |
15 | 14 | rpred 12845 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑒 ∈ ℝ) |
16 | 1, 6, 4 | dnibnd 34729 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) ≤ (abs‘(𝑧 − 𝑦))) |
17 | simpr 485 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘(𝑧 − 𝑦)) < 𝑒) | |
18 | 10, 13, 15, 16, 17 | lelttrd 11206 | . . . . . 6 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒) |
19 | 18 | ex 413 | . . . . 5 ⊢ (((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
20 | 19 | ralrimiva 3140 | . . . 4 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
21 | breq2 5091 | . . . . 5 ⊢ (𝑑 = 𝑒 → ((abs‘(𝑧 − 𝑦)) < 𝑑 ↔ (abs‘(𝑧 − 𝑦)) < 𝑒)) | |
22 | 21 | rspceaimv 3574 | . . . 4 ⊢ ((𝑒 ∈ ℝ+ ∧ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) → ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
23 | 3, 20, 22 | syl2anc 584 | . . 3 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
24 | 23 | rgen2 3191 | . 2 ⊢ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒) |
25 | ax-resscn 11001 | . . 3 ⊢ ℝ ⊆ ℂ | |
26 | elcncf2 24125 | . . 3 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑇 ∈ (ℝ–cn→ℝ) ↔ (𝑇:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)))) | |
27 | 25, 25, 26 | mp2an 689 | . 2 ⊢ (𝑇 ∈ (ℝ–cn→ℝ) ↔ (𝑇:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒))) |
28 | 2, 24, 27 | mpbir2an 708 | 1 ⊢ 𝑇 ∈ (ℝ–cn→ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ∃wrex 3071 ⊆ wss 3897 class class class wbr 5087 ↦ cmpt 5170 ⟶wf 6461 ‘cfv 6465 (class class class)co 7315 ℂcc 10942 ℝcr 10943 1c1 10945 + caddc 10947 < clt 11082 − cmin 11278 / cdiv 11705 2c2 12101 ℝ+crp 12803 ⌊cfl 13583 abscabs 15017 –cn→ccncf 24111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-map 8665 df-en 8782 df-dom 8783 df-sdom 8784 df-sup 9271 df-inf 9272 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-n0 12307 df-z 12393 df-uz 12656 df-rp 12804 df-fl 13585 df-seq 13795 df-exp 13856 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 df-cncf 24113 |
This theorem is referenced by: knoppcnlem10 34740 |
Copyright terms: Public domain | W3C validator |