Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnicn Structured version   Visualization version   GIF version

Theorem dnicn 33849
Description: The "distance to nearest integer" function is continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypothesis
Ref Expression
dnicn.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
Assertion
Ref Expression
dnicn 𝑇 ∈ (ℝ–cn→ℝ)

Proof of Theorem dnicn
Dummy variables 𝑑 𝑒 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dnicn.1 . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
21dnif 33831 . 2 𝑇:ℝ⟶ℝ
3 simpr 488 . . . 4 ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
4 simplr 768 . . . . . . . . . . 11 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → 𝑧 ∈ ℝ)
51, 4dnicld2 33830 . . . . . . . . . 10 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → (𝑇𝑧) ∈ ℝ)
6 simplll 774 . . . . . . . . . . 11 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → 𝑦 ∈ ℝ)
71, 6dnicld2 33830 . . . . . . . . . 10 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → (𝑇𝑦) ∈ ℝ)
85, 7resubcld 11053 . . . . . . . . 9 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → ((𝑇𝑧) − (𝑇𝑦)) ∈ ℝ)
98recnd 10654 . . . . . . . 8 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → ((𝑇𝑧) − (𝑇𝑦)) ∈ ℂ)
109abscld 14785 . . . . . . 7 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → (abs‘((𝑇𝑧) − (𝑇𝑦))) ∈ ℝ)
114, 6resubcld 11053 . . . . . . . . 9 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → (𝑧𝑦) ∈ ℝ)
1211recnd 10654 . . . . . . . 8 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → (𝑧𝑦) ∈ ℂ)
1312abscld 14785 . . . . . . 7 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → (abs‘(𝑧𝑦)) ∈ ℝ)
143ad2antrr 725 . . . . . . . 8 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → 𝑒 ∈ ℝ+)
1514rpred 12417 . . . . . . 7 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → 𝑒 ∈ ℝ)
161, 6, 4dnibnd 33848 . . . . . . 7 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → (abs‘((𝑇𝑧) − (𝑇𝑦))) ≤ (abs‘(𝑧𝑦)))
17 simpr 488 . . . . . . 7 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → (abs‘(𝑧𝑦)) < 𝑒)
1810, 13, 15, 16, 17lelttrd 10783 . . . . . 6 ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧𝑦)) < 𝑒) → (abs‘((𝑇𝑧) − (𝑇𝑦))) < 𝑒)
1918ex 416 . . . . 5 (((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝑇𝑧) − (𝑇𝑦))) < 𝑒))
2019ralrimiva 3176 . . . 4 ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝑇𝑧) − (𝑇𝑦))) < 𝑒))
21 breq2 5051 . . . . 5 (𝑑 = 𝑒 → ((abs‘(𝑧𝑦)) < 𝑑 ↔ (abs‘(𝑧𝑦)) < 𝑒))
2221rspceaimv 3613 . . . 4 ((𝑒 ∈ ℝ+ ∧ ∀𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑒 → (abs‘((𝑇𝑧) − (𝑇𝑦))) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝑇𝑧) − (𝑇𝑦))) < 𝑒))
233, 20, 22syl2anc 587 . . 3 ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝑇𝑧) − (𝑇𝑦))) < 𝑒))
2423rgen2 3197 . 2 𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝑇𝑧) − (𝑇𝑦))) < 𝑒)
25 ax-resscn 10579 . . 3 ℝ ⊆ ℂ
26 elcncf2 23484 . . 3 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑇 ∈ (ℝ–cn→ℝ) ↔ (𝑇:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝑇𝑧) − (𝑇𝑦))) < 𝑒))))
2725, 25, 26mp2an 691 . 2 (𝑇 ∈ (ℝ–cn→ℝ) ↔ (𝑇:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧 ∈ ℝ ((abs‘(𝑧𝑦)) < 𝑑 → (abs‘((𝑇𝑧) − (𝑇𝑦))) < 𝑒)))
282, 24, 27mpbir2an 710 1 𝑇 ∈ (ℝ–cn→ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3132  wrex 3133  wss 3918   class class class wbr 5047  cmpt 5127  wf 6332  cfv 6336  (class class class)co 7138  cc 10520  cr 10521  1c1 10523   + caddc 10525   < clt 10660  cmin 10855   / cdiv 11282  2c2 11678  +crp 12375  cfl 13153  abscabs 14582  cnccncf 23470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-n0 11884  df-z 11968  df-uz 12230  df-rp 12376  df-fl 13155  df-seq 13363  df-exp 13424  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-cncf 23472
This theorem is referenced by:  knoppcnlem10  33859
  Copyright terms: Public domain W3C validator