Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dnicn | Structured version Visualization version GIF version |
Description: The "distance to nearest integer" function is continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
dnicn.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
Ref | Expression |
---|---|
dnicn | ⊢ 𝑇 ∈ (ℝ–cn→ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnicn.1 | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
2 | 1 | dnif 34654 | . 2 ⊢ 𝑇:ℝ⟶ℝ |
3 | simpr 485 | . . . 4 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+) | |
4 | simplr 766 | . . . . . . . . . . 11 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑧 ∈ ℝ) | |
5 | 1, 4 | dnicld2 34653 | . . . . . . . . . 10 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑇‘𝑧) ∈ ℝ) |
6 | simplll 772 | . . . . . . . . . . 11 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑦 ∈ ℝ) | |
7 | 1, 6 | dnicld2 34653 | . . . . . . . . . 10 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑇‘𝑦) ∈ ℝ) |
8 | 5, 7 | resubcld 11403 | . . . . . . . . 9 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → ((𝑇‘𝑧) − (𝑇‘𝑦)) ∈ ℝ) |
9 | 8 | recnd 11003 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → ((𝑇‘𝑧) − (𝑇‘𝑦)) ∈ ℂ) |
10 | 9 | abscld 15148 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) ∈ ℝ) |
11 | 4, 6 | resubcld 11403 | . . . . . . . . 9 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑧 − 𝑦) ∈ ℝ) |
12 | 11 | recnd 11003 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑧 − 𝑦) ∈ ℂ) |
13 | 12 | abscld 15148 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘(𝑧 − 𝑦)) ∈ ℝ) |
14 | 3 | ad2antrr 723 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑒 ∈ ℝ+) |
15 | 14 | rpred 12772 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑒 ∈ ℝ) |
16 | 1, 6, 4 | dnibnd 34671 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) ≤ (abs‘(𝑧 − 𝑦))) |
17 | simpr 485 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘(𝑧 − 𝑦)) < 𝑒) | |
18 | 10, 13, 15, 16, 17 | lelttrd 11133 | . . . . . 6 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒) |
19 | 18 | ex 413 | . . . . 5 ⊢ (((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
20 | 19 | ralrimiva 3103 | . . . 4 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
21 | breq2 5078 | . . . . 5 ⊢ (𝑑 = 𝑒 → ((abs‘(𝑧 − 𝑦)) < 𝑑 ↔ (abs‘(𝑧 − 𝑦)) < 𝑒)) | |
22 | 21 | rspceaimv 3565 | . . . 4 ⊢ ((𝑒 ∈ ℝ+ ∧ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) → ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
23 | 3, 20, 22 | syl2anc 584 | . . 3 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
24 | 23 | rgen2 3120 | . 2 ⊢ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒) |
25 | ax-resscn 10928 | . . 3 ⊢ ℝ ⊆ ℂ | |
26 | elcncf2 24053 | . . 3 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑇 ∈ (ℝ–cn→ℝ) ↔ (𝑇:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)))) | |
27 | 25, 25, 26 | mp2an 689 | . 2 ⊢ (𝑇 ∈ (ℝ–cn→ℝ) ↔ (𝑇:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒))) |
28 | 2, 24, 27 | mpbir2an 708 | 1 ⊢ 𝑇 ∈ (ℝ–cn→ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 class class class wbr 5074 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 1c1 10872 + caddc 10874 < clt 11009 − cmin 11205 / cdiv 11632 2c2 12028 ℝ+crp 12730 ⌊cfl 13510 abscabs 14945 –cn→ccncf 24039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fl 13512 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-cncf 24041 |
This theorem is referenced by: knoppcnlem10 34682 |
Copyright terms: Public domain | W3C validator |