| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnicn | Structured version Visualization version GIF version | ||
| Description: The "distance to nearest integer" function is continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| Ref | Expression |
|---|---|
| dnicn.1 | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| Ref | Expression |
|---|---|
| dnicn | ⊢ 𝑇 ∈ (ℝ–cn→ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnicn.1 | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 2 | 1 | dnif 36469 | . 2 ⊢ 𝑇:ℝ⟶ℝ |
| 3 | simpr 484 | . . . 4 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+) | |
| 4 | simplr 768 | . . . . . . . . . . 11 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑧 ∈ ℝ) | |
| 5 | 1, 4 | dnicld2 36468 | . . . . . . . . . 10 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑇‘𝑧) ∈ ℝ) |
| 6 | simplll 774 | . . . . . . . . . . 11 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑦 ∈ ℝ) | |
| 7 | 1, 6 | dnicld2 36468 | . . . . . . . . . 10 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑇‘𝑦) ∈ ℝ) |
| 8 | 5, 7 | resubcld 11613 | . . . . . . . . 9 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → ((𝑇‘𝑧) − (𝑇‘𝑦)) ∈ ℝ) |
| 9 | 8 | recnd 11209 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → ((𝑇‘𝑧) − (𝑇‘𝑦)) ∈ ℂ) |
| 10 | 9 | abscld 15412 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) ∈ ℝ) |
| 11 | 4, 6 | resubcld 11613 | . . . . . . . . 9 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑧 − 𝑦) ∈ ℝ) |
| 12 | 11 | recnd 11209 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (𝑧 − 𝑦) ∈ ℂ) |
| 13 | 12 | abscld 15412 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘(𝑧 − 𝑦)) ∈ ℝ) |
| 14 | 3 | ad2antrr 726 | . . . . . . . 8 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑒 ∈ ℝ+) |
| 15 | 14 | rpred 13002 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → 𝑒 ∈ ℝ) |
| 16 | 1, 6, 4 | dnibnd 36486 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) ≤ (abs‘(𝑧 − 𝑦))) |
| 17 | simpr 484 | . . . . . . 7 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘(𝑧 − 𝑦)) < 𝑒) | |
| 18 | 10, 13, 15, 16, 17 | lelttrd 11339 | . . . . . 6 ⊢ ((((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) ∧ (abs‘(𝑧 − 𝑦)) < 𝑒) → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒) |
| 19 | 18 | ex 412 | . . . . 5 ⊢ (((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) ∧ 𝑧 ∈ ℝ) → ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
| 20 | 19 | ralrimiva 3126 | . . . 4 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
| 21 | breq2 5114 | . . . . 5 ⊢ (𝑑 = 𝑒 → ((abs‘(𝑧 − 𝑦)) < 𝑑 ↔ (abs‘(𝑧 − 𝑦)) < 𝑒)) | |
| 22 | 21 | rspceaimv 3597 | . . . 4 ⊢ ((𝑒 ∈ ℝ+ ∧ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑒 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) → ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
| 23 | 3, 20, 22 | syl2anc 584 | . . 3 ⊢ ((𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)) |
| 24 | 23 | rgen2 3178 | . 2 ⊢ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒) |
| 25 | ax-resscn 11132 | . . 3 ⊢ ℝ ⊆ ℂ | |
| 26 | elcncf2 24790 | . . 3 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (𝑇 ∈ (ℝ–cn→ℝ) ↔ (𝑇:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒)))) | |
| 27 | 25, 25, 26 | mp2an 692 | . 2 ⊢ (𝑇 ∈ (ℝ–cn→ℝ) ↔ (𝑇:ℝ⟶ℝ ∧ ∀𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ ℝ ((abs‘(𝑧 − 𝑦)) < 𝑑 → (abs‘((𝑇‘𝑧) − (𝑇‘𝑦))) < 𝑒))) |
| 28 | 2, 24, 27 | mpbir2an 711 | 1 ⊢ 𝑇 ∈ (ℝ–cn→ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 class class class wbr 5110 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 1c1 11076 + caddc 11078 < clt 11215 − cmin 11412 / cdiv 11842 2c2 12248 ℝ+crp 12958 ⌊cfl 13759 abscabs 15207 –cn→ccncf 24776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fl 13761 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-cncf 24778 |
| This theorem is referenced by: knoppcnlem10 36497 |
| Copyright terms: Public domain | W3C validator |