MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim2lt Structured version   Visualization version   GIF version

Theorem rlim2lt 15445
Description: Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.)
Hypotheses
Ref Expression
rlim2.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim2.2 (𝜑𝐴 ⊆ ℝ)
rlim2.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
rlim2lt (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)

Proof of Theorem rlim2lt
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 rlim2.2 . . . 4 (𝜑𝐴 ⊆ ℝ)
3 rlim2.3 . . . 4 (𝜑𝐶 ∈ ℂ)
41, 2, 3rlim2 15444 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
5 simplr 765 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → 𝑦 ∈ ℝ)
6 simpl 481 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → 𝐴 ⊆ ℝ)
76sselda 3981 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
8 ltle 11306 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧𝑦𝑧))
95, 7, 8syl2anc 582 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → (𝑦 < 𝑧𝑦𝑧))
109imim1d 82 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
1110ralimdva 3165 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
122, 11sylan 578 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
1312reximdva 3166 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
1413ralimdv 3167 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
154, 14sylbid 239 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
16 peano2re 11391 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
1716adantl 480 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
18 ltp1 12058 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
1918ad2antlr 723 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → 𝑦 < (𝑦 + 1))
2016ad2antlr 723 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → (𝑦 + 1) ∈ ℝ)
21 ltletr 11310 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
225, 20, 7, 21syl3anc 1369 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
2319, 22mpand 691 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
2423imim1d 82 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ((𝑦 + 1) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
2524ralimdva 3165 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 ((𝑦 + 1) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
262, 25sylan 578 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 ((𝑦 + 1) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
27 breq1 5150 . . . . . . 7 (𝑤 = (𝑦 + 1) → (𝑤𝑧 ↔ (𝑦 + 1) ≤ 𝑧))
2827rspceaimv 3616 . . . . . 6 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑧𝐴 ((𝑦 + 1) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)) → ∃𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥))
2917, 26, 28syl6an 680 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3029rexlimdva 3153 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3130ralimdv 3167 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
321, 2, 3rlim2 15444 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3331, 32sylibrd 258 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → (𝑧𝐴𝐵) ⇝𝑟 𝐶))
3415, 33impbid 211 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2104  wral 3059  wrex 3068  wss 3947   class class class wbr 5147  cmpt 5230  cfv 6542  (class class class)co 7411  cc 11110  cr 11111  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cmin 11448  +crp 12978  abscabs 15185  𝑟 crli 15433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-rlim 15437
This theorem is referenced by:  rlim0lt  15457  rlimcnp  26706  xrlimcnp  26709
  Copyright terms: Public domain W3C validator