MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim2lt Structured version   Visualization version   GIF version

Theorem rlim2lt 15404
Description: Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.)
Hypotheses
Ref Expression
rlim2.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim2.2 (𝜑𝐴 ⊆ ℝ)
rlim2.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
rlim2lt (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)

Proof of Theorem rlim2lt
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 rlim2.2 . . . 4 (𝜑𝐴 ⊆ ℝ)
3 rlim2.3 . . . 4 (𝜑𝐶 ∈ ℂ)
41, 2, 3rlim2 15403 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
5 simplr 768 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → 𝑦 ∈ ℝ)
6 simpl 482 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → 𝐴 ⊆ ℝ)
76sselda 3935 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
8 ltle 11204 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧𝑦𝑧))
95, 7, 8syl2anc 584 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → (𝑦 < 𝑧𝑦𝑧))
109imim1d 82 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
1110ralimdva 3141 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
122, 11sylan 580 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
1312reximdva 3142 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
1413ralimdv 3143 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
154, 14sylbid 240 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
16 peano2re 11289 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
1716adantl 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
18 ltp1 11964 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
1918ad2antlr 727 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → 𝑦 < (𝑦 + 1))
2016ad2antlr 727 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → (𝑦 + 1) ∈ ℝ)
21 ltletr 11208 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
225, 20, 7, 21syl3anc 1373 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
2319, 22mpand 695 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
2423imim1d 82 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ((𝑦 + 1) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
2524ralimdva 3141 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 ((𝑦 + 1) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
262, 25sylan 580 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 ((𝑦 + 1) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
27 breq1 5095 . . . . . . 7 (𝑤 = (𝑦 + 1) → (𝑤𝑧 ↔ (𝑦 + 1) ≤ 𝑧))
2827rspceaimv 3583 . . . . . 6 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑧𝐴 ((𝑦 + 1) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)) → ∃𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥))
2917, 26, 28syl6an 684 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3029rexlimdva 3130 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3130ralimdv 3143 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
321, 2, 3rlim2 15403 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3331, 32sylibrd 259 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → (𝑧𝐴𝐵) ⇝𝑟 𝐶))
3415, 33impbid 212 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3044  wrex 3053  wss 3903   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cmin 11347  +crp 12893  abscabs 15141  𝑟 crli 15392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-rlim 15396
This theorem is referenced by:  rlim0lt  15416  rlimcnp  26873  xrlimcnp  26876
  Copyright terms: Public domain W3C validator