MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divrcnv Structured version   Visualization version   GIF version

Theorem divrcnv 15209
Description: The sequence of reciprocals of real numbers, multiplied by the factor 𝐴, converges to zero. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
divrcnv (𝐴 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem divrcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abscl 14640 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
2 rerpdivcl 12418 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
31, 2sylan 583 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
4 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝐴 ∈ ℂ)
5 rpcn 12398 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
65ad2antrl 727 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ∈ ℂ)
7 rpne0 12404 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ≠ 0)
87ad2antrl 727 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ≠ 0)
94, 6, 8absdivd 14817 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) = ((abs‘𝐴) / (abs‘𝑛)))
10 rpre 12396 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
1110ad2antrl 727 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ∈ ℝ)
12 rpge0 12401 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → 0 ≤ 𝑛)
1312ad2antrl 727 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 ≤ 𝑛)
1411, 13absidd 14784 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘𝑛) = 𝑛)
1514oveq2d 7167 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / (abs‘𝑛)) = ((abs‘𝐴) / 𝑛))
169, 15eqtrd 2859 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) = ((abs‘𝐴) / 𝑛))
17 simprr 772 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / 𝑥) < 𝑛)
184abscld 14798 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘𝐴) ∈ ℝ)
19 rpre 12396 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2019ad2antlr 726 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑥 ∈ ℝ)
21 rpgt0 12400 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 < 𝑥)
2221ad2antlr 726 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 < 𝑥)
23 rpgt0 12400 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 < 𝑛)
2423ad2antrl 727 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 < 𝑛)
25 ltdiv23 11531 . . . . . . . . 9 (((abs‘𝐴) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((abs‘𝐴) / 𝑥) < 𝑛 ↔ ((abs‘𝐴) / 𝑛) < 𝑥))
2618, 20, 22, 11, 24, 25syl122anc 1376 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (((abs‘𝐴) / 𝑥) < 𝑛 ↔ ((abs‘𝐴) / 𝑛) < 𝑥))
2717, 26mpbid 235 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / 𝑛) < 𝑥)
2816, 27eqbrtrd 5075 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) < 𝑥)
2928expr 460 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
3029ralrimiva 3177 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑛 ∈ ℝ+ (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
31 breq1 5056 . . . . 5 (𝑦 = ((abs‘𝐴) / 𝑥) → (𝑦 < 𝑛 ↔ ((abs‘𝐴) / 𝑥) < 𝑛))
3231rspceaimv 3614 . . . 4 ((((abs‘𝐴) / 𝑥) ∈ ℝ ∧ ∀𝑛 ∈ ℝ+ (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
333, 30, 32syl2anc 587 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
3433ralrimiva 3177 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
35 simpl 486 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
365adantl 485 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℂ)
377adantl 485 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝑛 ≠ 0)
3835, 36, 37divcld 11416 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → (𝐴 / 𝑛) ∈ ℂ)
3938ralrimiva 3177 . . 3 (𝐴 ∈ ℂ → ∀𝑛 ∈ ℝ+ (𝐴 / 𝑛) ∈ ℂ)
40 rpssre 12395 . . . 4 + ⊆ ℝ
4140a1i 11 . . 3 (𝐴 ∈ ℂ → ℝ+ ⊆ ℝ)
4239, 41rlim0lt 14868 . 2 (𝐴 ∈ ℂ → ((𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥)))
4334, 42mpbird 260 1 (𝐴 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2115  wne 3014  wral 3133  wrex 3134  wss 3919   class class class wbr 5053  cmpt 5133  cfv 6345  (class class class)co 7151  cc 10535  cr 10536  0cc0 10537   < clt 10675  cle 10676   / cdiv 11297  +crp 12388  abscabs 14595  𝑟 crli 14844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-2nd 7687  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-pm 8407  df-en 8508  df-dom 8509  df-sdom 8510  df-sup 8905  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11637  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-seq 13376  df-exp 13437  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-rlim 14848
This theorem is referenced by:  divcnv  15210  cxp2limlem  25570  logfacrlim  25817  dchrmusumlema  26086  mudivsum  26123  selberg2lem  26143  pntrsumo1  26158
  Copyright terms: Public domain W3C validator