MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divrcnv Structured version   Visualization version   GIF version

Theorem divrcnv 15562
Description: The sequence of reciprocals of real numbers, multiplied by the factor 𝐴, converges to zero. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
divrcnv (𝐴 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem divrcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abscl 14988 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
2 rerpdivcl 12759 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
31, 2sylan 580 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
4 simpll 764 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝐴 ∈ ℂ)
5 rpcn 12739 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
65ad2antrl 725 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ∈ ℂ)
7 rpne0 12745 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ≠ 0)
87ad2antrl 725 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ≠ 0)
94, 6, 8absdivd 15165 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) = ((abs‘𝐴) / (abs‘𝑛)))
10 rpre 12737 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
1110ad2antrl 725 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ∈ ℝ)
12 rpge0 12742 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → 0 ≤ 𝑛)
1312ad2antrl 725 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 ≤ 𝑛)
1411, 13absidd 15132 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘𝑛) = 𝑛)
1514oveq2d 7287 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / (abs‘𝑛)) = ((abs‘𝐴) / 𝑛))
169, 15eqtrd 2780 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) = ((abs‘𝐴) / 𝑛))
17 simprr 770 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / 𝑥) < 𝑛)
184abscld 15146 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘𝐴) ∈ ℝ)
19 rpre 12737 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2019ad2antlr 724 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑥 ∈ ℝ)
21 rpgt0 12741 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 < 𝑥)
2221ad2antlr 724 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 < 𝑥)
23 rpgt0 12741 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 < 𝑛)
2423ad2antrl 725 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 < 𝑛)
25 ltdiv23 11866 . . . . . . . . 9 (((abs‘𝐴) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((abs‘𝐴) / 𝑥) < 𝑛 ↔ ((abs‘𝐴) / 𝑛) < 𝑥))
2618, 20, 22, 11, 24, 25syl122anc 1378 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (((abs‘𝐴) / 𝑥) < 𝑛 ↔ ((abs‘𝐴) / 𝑛) < 𝑥))
2717, 26mpbid 231 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / 𝑛) < 𝑥)
2816, 27eqbrtrd 5101 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) < 𝑥)
2928expr 457 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
3029ralrimiva 3110 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑛 ∈ ℝ+ (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
31 breq1 5082 . . . . 5 (𝑦 = ((abs‘𝐴) / 𝑥) → (𝑦 < 𝑛 ↔ ((abs‘𝐴) / 𝑥) < 𝑛))
3231rspceaimv 3566 . . . 4 ((((abs‘𝐴) / 𝑥) ∈ ℝ ∧ ∀𝑛 ∈ ℝ+ (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
333, 30, 32syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
3433ralrimiva 3110 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
35 simpl 483 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
365adantl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℂ)
377adantl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝑛 ≠ 0)
3835, 36, 37divcld 11751 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → (𝐴 / 𝑛) ∈ ℂ)
3938ralrimiva 3110 . . 3 (𝐴 ∈ ℂ → ∀𝑛 ∈ ℝ+ (𝐴 / 𝑛) ∈ ℂ)
40 rpssre 12736 . . . 4 + ⊆ ℝ
4140a1i 11 . . 3 (𝐴 ∈ ℂ → ℝ+ ⊆ ℝ)
4239, 41rlim0lt 15216 . 2 (𝐴 ∈ ℂ → ((𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥)))
4334, 42mpbird 256 1 (𝐴 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2110  wne 2945  wral 3066  wrex 3067  wss 3892   class class class wbr 5079  cmpt 5162  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872   < clt 11010  cle 11011   / cdiv 11632  +crp 12729  abscabs 14943  𝑟 crli 15192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-rlim 15196
This theorem is referenced by:  divcnv  15563  cxp2limlem  26123  logfacrlim  26370  dchrmusumlema  26639  mudivsum  26676  selberg2lem  26696  pntrsumo1  26711
  Copyright terms: Public domain W3C validator