MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divrcnv Structured version   Visualization version   GIF version

Theorem divrcnv 15873
Description: The sequence of reciprocals of real numbers, multiplied by the factor 𝐴, converges to zero. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
divrcnv (𝐴 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem divrcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abscl 15302 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
2 rerpdivcl 13044 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
31, 2sylan 580 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
4 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝐴 ∈ ℂ)
5 rpcn 13024 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
65ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ∈ ℂ)
7 rpne0 13030 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ≠ 0)
87ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ≠ 0)
94, 6, 8absdivd 15479 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) = ((abs‘𝐴) / (abs‘𝑛)))
10 rpre 13022 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
1110ad2antrl 728 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ∈ ℝ)
12 rpge0 13027 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → 0 ≤ 𝑛)
1312ad2antrl 728 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 ≤ 𝑛)
1411, 13absidd 15446 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘𝑛) = 𝑛)
1514oveq2d 7426 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / (abs‘𝑛)) = ((abs‘𝐴) / 𝑛))
169, 15eqtrd 2771 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) = ((abs‘𝐴) / 𝑛))
17 simprr 772 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / 𝑥) < 𝑛)
184abscld 15460 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘𝐴) ∈ ℝ)
19 rpre 13022 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2019ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑥 ∈ ℝ)
21 rpgt0 13026 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 < 𝑥)
2221ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 < 𝑥)
23 rpgt0 13026 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 < 𝑛)
2423ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 < 𝑛)
25 ltdiv23 12138 . . . . . . . . 9 (((abs‘𝐴) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((abs‘𝐴) / 𝑥) < 𝑛 ↔ ((abs‘𝐴) / 𝑛) < 𝑥))
2618, 20, 22, 11, 24, 25syl122anc 1381 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (((abs‘𝐴) / 𝑥) < 𝑛 ↔ ((abs‘𝐴) / 𝑛) < 𝑥))
2717, 26mpbid 232 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / 𝑛) < 𝑥)
2816, 27eqbrtrd 5146 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) < 𝑥)
2928expr 456 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
3029ralrimiva 3133 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑛 ∈ ℝ+ (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
31 breq1 5127 . . . . 5 (𝑦 = ((abs‘𝐴) / 𝑥) → (𝑦 < 𝑛 ↔ ((abs‘𝐴) / 𝑥) < 𝑛))
3231rspceaimv 3612 . . . 4 ((((abs‘𝐴) / 𝑥) ∈ ℝ ∧ ∀𝑛 ∈ ℝ+ (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
333, 30, 32syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
3433ralrimiva 3133 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
35 simpl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
365adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℂ)
377adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝑛 ≠ 0)
3835, 36, 37divcld 12022 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → (𝐴 / 𝑛) ∈ ℂ)
3938ralrimiva 3133 . . 3 (𝐴 ∈ ℂ → ∀𝑛 ∈ ℝ+ (𝐴 / 𝑛) ∈ ℂ)
40 rpssre 13021 . . . 4 + ⊆ ℝ
4140a1i 11 . . 3 (𝐴 ∈ ℂ → ℝ+ ⊆ ℝ)
4239, 41rlim0lt 15530 . 2 (𝐴 ∈ ℂ → ((𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥)))
4334, 42mpbird 257 1 (𝐴 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wne 2933  wral 3052  wrex 3061  wss 3931   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134   < clt 11274  cle 11275   / cdiv 11899  +crp 13013  abscabs 15258  𝑟 crli 15506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-rlim 15510
This theorem is referenced by:  divcnv  15874  cxp2limlem  26943  logfacrlim  27192  dchrmusumlema  27461  mudivsum  27498  selberg2lem  27518  pntrsumo1  27533
  Copyright terms: Public domain W3C validator