MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divrcnv Structured version   Visualization version   GIF version

Theorem divrcnv 15737
Description: The sequence of reciprocals of real numbers, multiplied by the factor 𝐴, converges to zero. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
divrcnv (𝐴 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem divrcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abscl 15163 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
2 rerpdivcl 12945 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
31, 2sylan 580 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
4 simpll 765 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝐴 ∈ ℂ)
5 rpcn 12925 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
65ad2antrl 726 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ∈ ℂ)
7 rpne0 12931 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ≠ 0)
87ad2antrl 726 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ≠ 0)
94, 6, 8absdivd 15340 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) = ((abs‘𝐴) / (abs‘𝑛)))
10 rpre 12923 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
1110ad2antrl 726 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ∈ ℝ)
12 rpge0 12928 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → 0 ≤ 𝑛)
1312ad2antrl 726 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 ≤ 𝑛)
1411, 13absidd 15307 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘𝑛) = 𝑛)
1514oveq2d 7373 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / (abs‘𝑛)) = ((abs‘𝐴) / 𝑛))
169, 15eqtrd 2776 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) = ((abs‘𝐴) / 𝑛))
17 simprr 771 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / 𝑥) < 𝑛)
184abscld 15321 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘𝐴) ∈ ℝ)
19 rpre 12923 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2019ad2antlr 725 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑥 ∈ ℝ)
21 rpgt0 12927 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 < 𝑥)
2221ad2antlr 725 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 < 𝑥)
23 rpgt0 12927 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 < 𝑛)
2423ad2antrl 726 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 < 𝑛)
25 ltdiv23 12046 . . . . . . . . 9 (((abs‘𝐴) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((abs‘𝐴) / 𝑥) < 𝑛 ↔ ((abs‘𝐴) / 𝑛) < 𝑥))
2618, 20, 22, 11, 24, 25syl122anc 1379 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (((abs‘𝐴) / 𝑥) < 𝑛 ↔ ((abs‘𝐴) / 𝑛) < 𝑥))
2717, 26mpbid 231 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / 𝑛) < 𝑥)
2816, 27eqbrtrd 5127 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) < 𝑥)
2928expr 457 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
3029ralrimiva 3143 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑛 ∈ ℝ+ (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
31 breq1 5108 . . . . 5 (𝑦 = ((abs‘𝐴) / 𝑥) → (𝑦 < 𝑛 ↔ ((abs‘𝐴) / 𝑥) < 𝑛))
3231rspceaimv 3585 . . . 4 ((((abs‘𝐴) / 𝑥) ∈ ℝ ∧ ∀𝑛 ∈ ℝ+ (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
333, 30, 32syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
3433ralrimiva 3143 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
35 simpl 483 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
365adantl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℂ)
377adantl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝑛 ≠ 0)
3835, 36, 37divcld 11931 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → (𝐴 / 𝑛) ∈ ℂ)
3938ralrimiva 3143 . . 3 (𝐴 ∈ ℂ → ∀𝑛 ∈ ℝ+ (𝐴 / 𝑛) ∈ ℂ)
40 rpssre 12922 . . . 4 + ⊆ ℝ
4140a1i 11 . . 3 (𝐴 ∈ ℂ → ℝ+ ⊆ ℝ)
4239, 41rlim0lt 15391 . 2 (𝐴 ∈ ℂ → ((𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥)))
4334, 42mpbird 256 1 (𝐴 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wne 2943  wral 3064  wrex 3073  wss 3910   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   < clt 11189  cle 11190   / cdiv 11812  +crp 12915  abscabs 15119  𝑟 crli 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-rlim 15371
This theorem is referenced by:  divcnv  15738  cxp2limlem  26325  logfacrlim  26572  dchrmusumlema  26841  mudivsum  26878  selberg2lem  26898  pntrsumo1  26913
  Copyright terms: Public domain W3C validator