MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divrcnv Structured version   Visualization version   GIF version

Theorem divrcnv 15794
Description: The sequence of reciprocals of real numbers, multiplied by the factor 𝐴, converges to zero. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
divrcnv (𝐴 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem divrcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abscl 15221 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
2 rerpdivcl 13000 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
31, 2sylan 580 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((abs‘𝐴) / 𝑥) ∈ ℝ)
4 simpll 765 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝐴 ∈ ℂ)
5 rpcn 12980 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ∈ ℂ)
65ad2antrl 726 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ∈ ℂ)
7 rpne0 12986 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ≠ 0)
87ad2antrl 726 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ≠ 0)
94, 6, 8absdivd 15398 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) = ((abs‘𝐴) / (abs‘𝑛)))
10 rpre 12978 . . . . . . . . . . 11 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
1110ad2antrl 726 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑛 ∈ ℝ)
12 rpge0 12983 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → 0 ≤ 𝑛)
1312ad2antrl 726 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 ≤ 𝑛)
1411, 13absidd 15365 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘𝑛) = 𝑛)
1514oveq2d 7421 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / (abs‘𝑛)) = ((abs‘𝐴) / 𝑛))
169, 15eqtrd 2772 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) = ((abs‘𝐴) / 𝑛))
17 simprr 771 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / 𝑥) < 𝑛)
184abscld 15379 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘𝐴) ∈ ℝ)
19 rpre 12978 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2019ad2antlr 725 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 𝑥 ∈ ℝ)
21 rpgt0 12982 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → 0 < 𝑥)
2221ad2antlr 725 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 < 𝑥)
23 rpgt0 12982 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 < 𝑛)
2423ad2antrl 726 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → 0 < 𝑛)
25 ltdiv23 12101 . . . . . . . . 9 (((abs‘𝐴) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((abs‘𝐴) / 𝑥) < 𝑛 ↔ ((abs‘𝐴) / 𝑛) < 𝑥))
2618, 20, 22, 11, 24, 25syl122anc 1379 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (((abs‘𝐴) / 𝑥) < 𝑛 ↔ ((abs‘𝐴) / 𝑛) < 𝑥))
2717, 26mpbid 231 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → ((abs‘𝐴) / 𝑛) < 𝑥)
2816, 27eqbrtrd 5169 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ (𝑛 ∈ ℝ+ ∧ ((abs‘𝐴) / 𝑥) < 𝑛)) → (abs‘(𝐴 / 𝑛)) < 𝑥)
2928expr 457 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℝ+) → (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
3029ralrimiva 3146 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑛 ∈ ℝ+ (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
31 breq1 5150 . . . . 5 (𝑦 = ((abs‘𝐴) / 𝑥) → (𝑦 < 𝑛 ↔ ((abs‘𝐴) / 𝑥) < 𝑛))
3231rspceaimv 3616 . . . 4 ((((abs‘𝐴) / 𝑥) ∈ ℝ ∧ ∀𝑛 ∈ ℝ+ (((abs‘𝐴) / 𝑥) < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
333, 30, 32syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
3433ralrimiva 3146 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥))
35 simpl 483 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
365adantl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℂ)
377adantl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → 𝑛 ≠ 0)
3835, 36, 37divcld 11986 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+) → (𝐴 / 𝑛) ∈ ℂ)
3938ralrimiva 3146 . . 3 (𝐴 ∈ ℂ → ∀𝑛 ∈ ℝ+ (𝐴 / 𝑛) ∈ ℂ)
40 rpssre 12977 . . . 4 + ⊆ ℝ
4140a1i 11 . . 3 (𝐴 ∈ ℂ → ℝ+ ⊆ ℝ)
4239, 41rlim0lt 15449 . 2 (𝐴 ∈ ℂ → ((𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑛 ∈ ℝ+ (𝑦 < 𝑛 → (abs‘(𝐴 / 𝑛)) < 𝑥)))
4334, 42mpbird 256 1 (𝐴 ∈ ℂ → (𝑛 ∈ ℝ+ ↦ (𝐴 / 𝑛)) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wne 2940  wral 3061  wrex 3070  wss 3947   class class class wbr 5147  cmpt 5230  cfv 6540  (class class class)co 7405  cc 11104  cr 11105  0cc0 11106   < clt 11244  cle 11245   / cdiv 11867  +crp 12970  abscabs 15177  𝑟 crli 15425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-rlim 15429
This theorem is referenced by:  divcnv  15795  cxp2limlem  26469  logfacrlim  26716  dchrmusumlema  26985  mudivsum  27022  selberg2lem  27042  pntrsumo1  27057
  Copyright terms: Public domain W3C validator