MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexico Structured version   Visualization version   GIF version

Theorem rexico 15372
Description: Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
Assertion
Ref Expression
rexico ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘   𝜑,𝑗
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem rexico
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
2 pnfxr 11289 . . . 4 +∞ ∈ ℝ*
3 icossre 13445 . . . 4 ((𝐵 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵[,)+∞) ⊆ ℝ)
41, 2, 3sylancl 586 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵[,)+∞) ⊆ ℝ)
5 ssrexv 4028 . . 3 ((𝐵[,)+∞) ⊆ ℝ → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
64, 5syl 17 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
7 simpr 484 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝑗 ∈ ℝ)
8 simplr 768 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐵 ∈ ℝ)
97, 8ifcld 4547 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → if(𝐵𝑗, 𝑗, 𝐵) ∈ ℝ)
10 max1 13201 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))
1110adantll 714 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))
12 elicopnf 13462 . . . . . . 7 (𝐵 ∈ ℝ → (if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ↔ (if(𝐵𝑗, 𝑗, 𝐵) ∈ ℝ ∧ 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))))
1312ad2antlr 727 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ↔ (if(𝐵𝑗, 𝑗, 𝐵) ∈ ℝ ∧ 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))))
149, 11, 13mpbir2and 713 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞))
15 simpllr 775 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
16 simplr 768 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝑗 ∈ ℝ)
17 simpll 766 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐴 ⊆ ℝ)
1817sselda 3958 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝑘 ∈ ℝ)
19 maxle 13207 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘 ↔ (𝐵𝑘𝑗𝑘)))
2015, 16, 18, 19syl3anc 1373 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘 ↔ (𝐵𝑘𝑗𝑘)))
21 simpr 484 . . . . . . . 8 ((𝐵𝑘𝑗𝑘) → 𝑗𝑘)
2220, 21biimtrdi 253 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝑗𝑘))
2322imim1d 82 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘𝜑) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝜑)))
2423ralimdva 3152 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (∀𝑘𝐴 (𝑗𝑘𝜑) → ∀𝑘𝐴 (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝜑)))
25 breq1 5122 . . . . . 6 (𝑛 = if(𝐵𝑗, 𝑗, 𝐵) → (𝑛𝑘 ↔ if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘))
2625rspceaimv 3607 . . . . 5 ((if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ∧ ∀𝑘𝐴 (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝜑)) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑))
2714, 24, 26syl6an 684 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑)))
2827rexlimdva 3141 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑)))
29 breq1 5122 . . . . . 6 (𝑛 = 𝑗 → (𝑛𝑘𝑗𝑘))
3029imbi1d 341 . . . . 5 (𝑛 = 𝑗 → ((𝑛𝑘𝜑) ↔ (𝑗𝑘𝜑)))
3130ralbidv 3163 . . . 4 (𝑛 = 𝑗 → (∀𝑘𝐴 (𝑛𝑘𝜑) ↔ ∀𝑘𝐴 (𝑗𝑘𝜑)))
3231cbvrexvw 3221 . . 3 (∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑) ↔ ∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑))
3328, 32imbitrdi 251 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑)))
346, 33impbid 212 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3051  wrex 3060  wss 3926  ifcif 4500   class class class wbr 5119  (class class class)co 7405  cr 11128  +∞cpnf 11266  *cxr 11268  cle 11270  [,)cico 13364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-ico 13368
This theorem is referenced by:  rlimi2  15530  ello1mpt2  15538  dvfsumrlim  25990
  Copyright terms: Public domain W3C validator