MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexico Structured version   Visualization version   GIF version

Theorem rexico 14917
Description: Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
Assertion
Ref Expression
rexico ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘   𝜑,𝑗
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem rexico
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
2 pnfxr 10887 . . . 4 +∞ ∈ ℝ*
3 icossre 13016 . . . 4 ((𝐵 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵[,)+∞) ⊆ ℝ)
41, 2, 3sylancl 589 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵[,)+∞) ⊆ ℝ)
5 ssrexv 3968 . . 3 ((𝐵[,)+∞) ⊆ ℝ → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
64, 5syl 17 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
7 simpr 488 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝑗 ∈ ℝ)
8 simplr 769 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐵 ∈ ℝ)
97, 8ifcld 4485 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → if(𝐵𝑗, 𝑗, 𝐵) ∈ ℝ)
10 max1 12775 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))
1110adantll 714 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))
12 elicopnf 13033 . . . . . . 7 (𝐵 ∈ ℝ → (if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ↔ (if(𝐵𝑗, 𝑗, 𝐵) ∈ ℝ ∧ 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))))
1312ad2antlr 727 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ↔ (if(𝐵𝑗, 𝑗, 𝐵) ∈ ℝ ∧ 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))))
149, 11, 13mpbir2and 713 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞))
15 simpllr 776 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
16 simplr 769 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝑗 ∈ ℝ)
17 simpll 767 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐴 ⊆ ℝ)
1817sselda 3901 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝑘 ∈ ℝ)
19 maxle 12781 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘 ↔ (𝐵𝑘𝑗𝑘)))
2015, 16, 18, 19syl3anc 1373 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘 ↔ (𝐵𝑘𝑗𝑘)))
21 simpr 488 . . . . . . . 8 ((𝐵𝑘𝑗𝑘) → 𝑗𝑘)
2220, 21syl6bi 256 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝑗𝑘))
2322imim1d 82 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘𝜑) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝜑)))
2423ralimdva 3100 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (∀𝑘𝐴 (𝑗𝑘𝜑) → ∀𝑘𝐴 (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝜑)))
25 breq1 5056 . . . . . 6 (𝑛 = if(𝐵𝑗, 𝑗, 𝐵) → (𝑛𝑘 ↔ if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘))
2625rspceaimv 3542 . . . . 5 ((if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ∧ ∀𝑘𝐴 (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝜑)) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑))
2714, 24, 26syl6an 684 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑)))
2827rexlimdva 3203 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑)))
29 breq1 5056 . . . . . 6 (𝑛 = 𝑗 → (𝑛𝑘𝑗𝑘))
3029imbi1d 345 . . . . 5 (𝑛 = 𝑗 → ((𝑛𝑘𝜑) ↔ (𝑗𝑘𝜑)))
3130ralbidv 3118 . . . 4 (𝑛 = 𝑗 → (∀𝑘𝐴 (𝑛𝑘𝜑) ↔ ∀𝑘𝐴 (𝑗𝑘𝜑)))
3231cbvrexvw 3359 . . 3 (∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑) ↔ ∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑))
3328, 32syl6ib 254 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑)))
346, 33impbid 215 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2110  wral 3061  wrex 3062  wss 3866  ifcif 4439   class class class wbr 5053  (class class class)co 7213  cr 10728  +∞cpnf 10864  *cxr 10866  cle 10868  [,)cico 12937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-pre-lttri 10803  ax-pre-lttrn 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-ico 12941
This theorem is referenced by:  rlimi2  15075  ello1mpt2  15083  dvfsumrlim  24928
  Copyright terms: Public domain W3C validator