MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexico Structured version   Visualization version   GIF version

Theorem rexico 14993
Description: Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
Assertion
Ref Expression
rexico ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘   𝜑,𝑗
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem rexico
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
2 pnfxr 10960 . . . 4 +∞ ∈ ℝ*
3 icossre 13089 . . . 4 ((𝐵 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵[,)+∞) ⊆ ℝ)
41, 2, 3sylancl 585 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵[,)+∞) ⊆ ℝ)
5 ssrexv 3984 . . 3 ((𝐵[,)+∞) ⊆ ℝ → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
64, 5syl 17 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
7 simpr 484 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝑗 ∈ ℝ)
8 simplr 765 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐵 ∈ ℝ)
97, 8ifcld 4502 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → if(𝐵𝑗, 𝑗, 𝐵) ∈ ℝ)
10 max1 12848 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))
1110adantll 710 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))
12 elicopnf 13106 . . . . . . 7 (𝐵 ∈ ℝ → (if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ↔ (if(𝐵𝑗, 𝑗, 𝐵) ∈ ℝ ∧ 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))))
1312ad2antlr 723 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ↔ (if(𝐵𝑗, 𝑗, 𝐵) ∈ ℝ ∧ 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))))
149, 11, 13mpbir2and 709 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞))
15 simpllr 772 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
16 simplr 765 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝑗 ∈ ℝ)
17 simpll 763 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐴 ⊆ ℝ)
1817sselda 3917 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝑘 ∈ ℝ)
19 maxle 12854 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘 ↔ (𝐵𝑘𝑗𝑘)))
2015, 16, 18, 19syl3anc 1369 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘 ↔ (𝐵𝑘𝑗𝑘)))
21 simpr 484 . . . . . . . 8 ((𝐵𝑘𝑗𝑘) → 𝑗𝑘)
2220, 21syl6bi 252 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝑗𝑘))
2322imim1d 82 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘𝜑) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝜑)))
2423ralimdva 3102 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (∀𝑘𝐴 (𝑗𝑘𝜑) → ∀𝑘𝐴 (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝜑)))
25 breq1 5073 . . . . . 6 (𝑛 = if(𝐵𝑗, 𝑗, 𝐵) → (𝑛𝑘 ↔ if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘))
2625rspceaimv 3557 . . . . 5 ((if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ∧ ∀𝑘𝐴 (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝜑)) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑))
2714, 24, 26syl6an 680 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑)))
2827rexlimdva 3212 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑)))
29 breq1 5073 . . . . . 6 (𝑛 = 𝑗 → (𝑛𝑘𝑗𝑘))
3029imbi1d 341 . . . . 5 (𝑛 = 𝑗 → ((𝑛𝑘𝜑) ↔ (𝑗𝑘𝜑)))
3130ralbidv 3120 . . . 4 (𝑛 = 𝑗 → (∀𝑘𝐴 (𝑛𝑘𝜑) ↔ ∀𝑘𝐴 (𝑗𝑘𝜑)))
3231cbvrexvw 3373 . . 3 (∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑) ↔ ∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑))
3328, 32syl6ib 250 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑)))
346, 33impbid 211 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wral 3063  wrex 3064  wss 3883  ifcif 4456   class class class wbr 5070  (class class class)co 7255  cr 10801  +∞cpnf 10937  *cxr 10939  cle 10941  [,)cico 13010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ico 13014
This theorem is referenced by:  rlimi2  15151  ello1mpt2  15159  dvfsumrlim  25100
  Copyright terms: Public domain W3C validator