MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexico Structured version   Visualization version   GIF version

Theorem rexico 15327
Description: Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
Assertion
Ref Expression
rexico ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘   𝜑,𝑗
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem rexico
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
2 pnfxr 11235 . . . 4 +∞ ∈ ℝ*
3 icossre 13396 . . . 4 ((𝐵 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵[,)+∞) ⊆ ℝ)
41, 2, 3sylancl 586 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵[,)+∞) ⊆ ℝ)
5 ssrexv 4019 . . 3 ((𝐵[,)+∞) ⊆ ℝ → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
64, 5syl 17 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
7 simpr 484 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝑗 ∈ ℝ)
8 simplr 768 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐵 ∈ ℝ)
97, 8ifcld 4538 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → if(𝐵𝑗, 𝑗, 𝐵) ∈ ℝ)
10 max1 13152 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))
1110adantll 714 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))
12 elicopnf 13413 . . . . . . 7 (𝐵 ∈ ℝ → (if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ↔ (if(𝐵𝑗, 𝑗, 𝐵) ∈ ℝ ∧ 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))))
1312ad2antlr 727 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ↔ (if(𝐵𝑗, 𝑗, 𝐵) ∈ ℝ ∧ 𝐵 ≤ if(𝐵𝑗, 𝑗, 𝐵))))
149, 11, 13mpbir2and 713 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞))
15 simpllr 775 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
16 simplr 768 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝑗 ∈ ℝ)
17 simpll 766 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐴 ⊆ ℝ)
1817sselda 3949 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝑘 ∈ ℝ)
19 maxle 13158 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘 ↔ (𝐵𝑘𝑗𝑘)))
2015, 16, 18, 19syl3anc 1373 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘 ↔ (𝐵𝑘𝑗𝑘)))
21 simpr 484 . . . . . . . 8 ((𝐵𝑘𝑗𝑘) → 𝑗𝑘)
2220, 21biimtrdi 253 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝑗𝑘))
2322imim1d 82 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘𝜑) → (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝜑)))
2423ralimdva 3146 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (∀𝑘𝐴 (𝑗𝑘𝜑) → ∀𝑘𝐴 (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝜑)))
25 breq1 5113 . . . . . 6 (𝑛 = if(𝐵𝑗, 𝑗, 𝐵) → (𝑛𝑘 ↔ if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘))
2625rspceaimv 3597 . . . . 5 ((if(𝐵𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ∧ ∀𝑘𝐴 (if(𝐵𝑗, 𝑗, 𝐵) ≤ 𝑘𝜑)) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑))
2714, 24, 26syl6an 684 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑)))
2827rexlimdva 3135 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑)))
29 breq1 5113 . . . . . 6 (𝑛 = 𝑗 → (𝑛𝑘𝑗𝑘))
3029imbi1d 341 . . . . 5 (𝑛 = 𝑗 → ((𝑛𝑘𝜑) ↔ (𝑗𝑘𝜑)))
3130ralbidv 3157 . . . 4 (𝑛 = 𝑗 → (∀𝑘𝐴 (𝑛𝑘𝜑) ↔ ∀𝑘𝐴 (𝑗𝑘𝜑)))
3231cbvrexvw 3217 . . 3 (∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑) ↔ ∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑))
3328, 32imbitrdi 251 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑)))
346, 33impbid 212 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3045  wrex 3054  wss 3917  ifcif 4491   class class class wbr 5110  (class class class)co 7390  cr 11074  +∞cpnf 11212  *cxr 11214  cle 11216  [,)cico 13315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ico 13319
This theorem is referenced by:  rlimi2  15487  ello1mpt2  15495  dvfsumrlim  25945
  Copyright terms: Public domain W3C validator