MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscn Structured version   Visualization version   GIF version

Theorem metdscn 23608
Description: The function 𝐹 which gives the distance from a point to a set is a continuous function into the metric topology of the extended reals. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metdscn.c 𝐶 = (dist‘ℝ*𝑠)
metdscn.k 𝐾 = (MetOpen‘𝐶)
Assertion
Ref Expression
metdscn ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem metdscn
Dummy variables 𝑤 𝑟 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metdscn.f . . . 4 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
21metdsf 23600 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
3 iccssxr 12904 . . 3 (0[,]+∞) ⊆ ℝ*
4 fss 6521 . . 3 ((𝐹:𝑋⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐹:𝑋⟶ℝ*)
52, 3, 4sylancl 589 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶ℝ*)
6 simprr 773 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
75ad2antrr 726 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝐹:𝑋⟶ℝ*)
8 simplrl 777 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑧𝑋)
97, 8ffvelrnd 6862 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝐹𝑧) ∈ ℝ*)
10 simprl 771 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑤𝑋)
117, 10ffvelrnd 6862 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝐹𝑤) ∈ ℝ*)
12 metdscn.c . . . . . . . . 9 𝐶 = (dist‘ℝ*𝑠)
1312xrsdsval 20261 . . . . . . . 8 (((𝐹𝑧) ∈ ℝ* ∧ (𝐹𝑤) ∈ ℝ*) → ((𝐹𝑧)𝐶(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))))
149, 11, 13syl2anc 587 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧)𝐶(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))))
15 metdscn.j . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
16 metdscn.k . . . . . . . . 9 𝐾 = (MetOpen‘𝐶)
17 simplll 775 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝐷 ∈ (∞Met‘𝑋))
18 simpllr 776 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑆𝑋)
19 simplrr 778 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑟 ∈ ℝ+)
20 xmetsym 23100 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑤𝑋𝑧𝑋) → (𝑤𝐷𝑧) = (𝑧𝐷𝑤))
2117, 10, 8, 20syl3anc 1372 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑤𝐷𝑧) = (𝑧𝐷𝑤))
22 simprr 773 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑧𝐷𝑤) < 𝑟)
2321, 22eqbrtrd 5052 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑤𝐷𝑧) < 𝑟)
241, 15, 12, 16, 17, 18, 10, 8, 19, 23metdscnlem 23607 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟)
251, 15, 12, 16, 17, 18, 8, 10, 19, 22metdscnlem 23607 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟)
26 breq1 5033 . . . . . . . . 9 (((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) → (((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟 ↔ if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟))
27 breq1 5033 . . . . . . . . 9 (((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) → (((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟 ↔ if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟))
2826, 27ifboth 4453 . . . . . . . 8 ((((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟 ∧ ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟) → if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟)
2924, 25, 28syl2anc 587 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟)
3014, 29eqbrtrd 5052 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟)
3130expr 460 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ 𝑤𝑋) → ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
3231ralrimiva 3096 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∀𝑤𝑋 ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
33 breq2 5034 . . . . 5 (𝑠 = 𝑟 → ((𝑧𝐷𝑤) < 𝑠 ↔ (𝑧𝐷𝑤) < 𝑟))
3433rspceaimv 3531 . . . 4 ((𝑟 ∈ ℝ+ ∧ ∀𝑤𝑋 ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
356, 32, 34syl2anc 587 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
3635ralrimivva 3103 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
37 simpl 486 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3812xrsxmet 23561 . . 3 𝐶 ∈ (∞Met‘ℝ*)
3915, 16metcn 23296 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ (∞Met‘ℝ*)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ* ∧ ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))))
4037, 38, 39sylancl 589 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ* ∧ ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))))
415, 36, 40mpbir2and 713 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3053  wrex 3054  wss 3843  ifcif 4414   class class class wbr 5030  cmpt 5110  ran crn 5526  wf 6335  cfv 6339  (class class class)co 7170  infcinf 8978  0cc0 10615  +∞cpnf 10750  *cxr 10752   < clt 10753  cle 10754  +crp 12472  -𝑒cxne 12587   +𝑒 cxad 12588  [,]cicc 12824  distcds 16677  *𝑠cxrs 16876  ∞Metcxmet 20202  MetOpencmopn 20207   Cn ccn 21975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-ec 8322  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-icc 12828  df-fz 12982  df-seq 13461  df-exp 13522  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-plusg 16681  df-mulr 16682  df-tset 16687  df-ple 16688  df-ds 16690  df-topgen 16820  df-xrs 16878  df-psmet 20209  df-xmet 20210  df-bl 20212  df-mopn 20213  df-top 21645  df-topon 21662  df-bases 21697  df-cn 21978  df-cnp 21979
This theorem is referenced by:  metdscn2  23609
  Copyright terms: Public domain W3C validator