MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscn Structured version   Visualization version   GIF version

Theorem metdscn 24765
Description: The function 𝐹 which gives the distance from a point to a set is a continuous function into the metric topology of the extended reals. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metdscn.c 𝐶 = (dist‘ℝ*𝑠)
metdscn.k 𝐾 = (MetOpen‘𝐶)
Assertion
Ref Expression
metdscn ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem metdscn
Dummy variables 𝑤 𝑟 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metdscn.f . . . 4 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
21metdsf 24757 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
3 iccssxr 13322 . . 3 (0[,]+∞) ⊆ ℝ*
4 fss 6663 . . 3 ((𝐹:𝑋⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐹:𝑋⟶ℝ*)
52, 3, 4sylancl 586 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶ℝ*)
6 simprr 772 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
75ad2antrr 726 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝐹:𝑋⟶ℝ*)
8 simplrl 776 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑧𝑋)
97, 8ffvelcdmd 7013 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝐹𝑧) ∈ ℝ*)
10 simprl 770 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑤𝑋)
117, 10ffvelcdmd 7013 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝐹𝑤) ∈ ℝ*)
12 metdscn.c . . . . . . . . 9 𝐶 = (dist‘ℝ*𝑠)
1312xrsdsval 21340 . . . . . . . 8 (((𝐹𝑧) ∈ ℝ* ∧ (𝐹𝑤) ∈ ℝ*) → ((𝐹𝑧)𝐶(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))))
149, 11, 13syl2anc 584 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧)𝐶(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))))
15 metdscn.j . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
16 metdscn.k . . . . . . . . 9 𝐾 = (MetOpen‘𝐶)
17 simplll 774 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝐷 ∈ (∞Met‘𝑋))
18 simpllr 775 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑆𝑋)
19 simplrr 777 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑟 ∈ ℝ+)
20 xmetsym 24255 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑤𝑋𝑧𝑋) → (𝑤𝐷𝑧) = (𝑧𝐷𝑤))
2117, 10, 8, 20syl3anc 1373 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑤𝐷𝑧) = (𝑧𝐷𝑤))
22 simprr 772 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑧𝐷𝑤) < 𝑟)
2321, 22eqbrtrd 5111 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑤𝐷𝑧) < 𝑟)
241, 15, 12, 16, 17, 18, 10, 8, 19, 23metdscnlem 24764 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟)
251, 15, 12, 16, 17, 18, 8, 10, 19, 22metdscnlem 24764 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟)
26 breq1 5092 . . . . . . . . 9 (((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) → (((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟 ↔ if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟))
27 breq1 5092 . . . . . . . . 9 (((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) → (((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟 ↔ if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟))
2826, 27ifboth 4513 . . . . . . . 8 ((((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟 ∧ ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟) → if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟)
2924, 25, 28syl2anc 584 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟)
3014, 29eqbrtrd 5111 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟)
3130expr 456 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ 𝑤𝑋) → ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
3231ralrimiva 3122 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∀𝑤𝑋 ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
33 breq2 5093 . . . . 5 (𝑠 = 𝑟 → ((𝑧𝐷𝑤) < 𝑠 ↔ (𝑧𝐷𝑤) < 𝑟))
3433rspceaimv 3581 . . . 4 ((𝑟 ∈ ℝ+ ∧ ∀𝑤𝑋 ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
356, 32, 34syl2anc 584 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
3635ralrimivva 3173 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
37 simpl 482 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3812xrsxmet 24718 . . 3 𝐶 ∈ (∞Met‘ℝ*)
3915, 16metcn 24451 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ (∞Met‘ℝ*)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ* ∧ ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))))
4037, 38, 39sylancl 586 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ* ∧ ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))))
415, 36, 40mpbir2and 713 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  wrex 3054  wss 3900  ifcif 4473   class class class wbr 5089  cmpt 5170  ran crn 5615  wf 6473  cfv 6477  (class class class)co 7341  infcinf 9320  0cc0 10998  +∞cpnf 11135  *cxr 11137   < clt 11138  cle 11139  +crp 12882  -𝑒cxne 13000   +𝑒 cxad 13001  [,]cicc 13240  distcds 17162  *𝑠cxrs 17396  ∞Metcxmet 21269  MetOpencmopn 21274   Cn ccn 23132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-ec 8619  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-icc 13244  df-fz 13400  df-seq 13901  df-exp 13961  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-struct 17050  df-slot 17085  df-ndx 17097  df-base 17113  df-plusg 17166  df-mulr 17167  df-tset 17172  df-ple 17173  df-ds 17175  df-topgen 17339  df-xrs 17398  df-psmet 21276  df-xmet 21277  df-bl 21279  df-mopn 21280  df-top 22802  df-topon 22819  df-bases 22854  df-cn 23135  df-cnp 23136
This theorem is referenced by:  metdscn2  24766
  Copyright terms: Public domain W3C validator