MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscn Structured version   Visualization version   GIF version

Theorem metdscn 24761
Description: The function 𝐹 which gives the distance from a point to a set is a continuous function into the metric topology of the extended reals. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metdscn.c 𝐶 = (dist‘ℝ*𝑠)
metdscn.k 𝐾 = (MetOpen‘𝐶)
Assertion
Ref Expression
metdscn ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem metdscn
Dummy variables 𝑤 𝑟 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metdscn.f . . . 4 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
21metdsf 24753 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
3 iccssxr 13351 . . 3 (0[,]+∞) ⊆ ℝ*
4 fss 6672 . . 3 ((𝐹:𝑋⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐹:𝑋⟶ℝ*)
52, 3, 4sylancl 586 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶ℝ*)
6 simprr 772 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
75ad2antrr 726 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝐹:𝑋⟶ℝ*)
8 simplrl 776 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑧𝑋)
97, 8ffvelcdmd 7023 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝐹𝑧) ∈ ℝ*)
10 simprl 770 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑤𝑋)
117, 10ffvelcdmd 7023 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝐹𝑤) ∈ ℝ*)
12 metdscn.c . . . . . . . . 9 𝐶 = (dist‘ℝ*𝑠)
1312xrsdsval 21335 . . . . . . . 8 (((𝐹𝑧) ∈ ℝ* ∧ (𝐹𝑤) ∈ ℝ*) → ((𝐹𝑧)𝐶(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))))
149, 11, 13syl2anc 584 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧)𝐶(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))))
15 metdscn.j . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
16 metdscn.k . . . . . . . . 9 𝐾 = (MetOpen‘𝐶)
17 simplll 774 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝐷 ∈ (∞Met‘𝑋))
18 simpllr 775 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑆𝑋)
19 simplrr 777 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑟 ∈ ℝ+)
20 xmetsym 24251 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑤𝑋𝑧𝑋) → (𝑤𝐷𝑧) = (𝑧𝐷𝑤))
2117, 10, 8, 20syl3anc 1373 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑤𝐷𝑧) = (𝑧𝐷𝑤))
22 simprr 772 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑧𝐷𝑤) < 𝑟)
2321, 22eqbrtrd 5117 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑤𝐷𝑧) < 𝑟)
241, 15, 12, 16, 17, 18, 10, 8, 19, 23metdscnlem 24760 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟)
251, 15, 12, 16, 17, 18, 8, 10, 19, 22metdscnlem 24760 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟)
26 breq1 5098 . . . . . . . . 9 (((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) → (((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟 ↔ if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟))
27 breq1 5098 . . . . . . . . 9 (((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) → (((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟 ↔ if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟))
2826, 27ifboth 4518 . . . . . . . 8 ((((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟 ∧ ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟) → if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟)
2924, 25, 28syl2anc 584 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟)
3014, 29eqbrtrd 5117 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟)
3130expr 456 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ 𝑤𝑋) → ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
3231ralrimiva 3121 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∀𝑤𝑋 ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
33 breq2 5099 . . . . 5 (𝑠 = 𝑟 → ((𝑧𝐷𝑤) < 𝑠 ↔ (𝑧𝐷𝑤) < 𝑟))
3433rspceaimv 3585 . . . 4 ((𝑟 ∈ ℝ+ ∧ ∀𝑤𝑋 ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
356, 32, 34syl2anc 584 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
3635ralrimivva 3172 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
37 simpl 482 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3812xrsxmet 24714 . . 3 𝐶 ∈ (∞Met‘ℝ*)
3915, 16metcn 24447 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ (∞Met‘ℝ*)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ* ∧ ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))))
4037, 38, 39sylancl 586 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ* ∧ ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))))
415, 36, 40mpbir2and 713 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3905  ifcif 4478   class class class wbr 5095  cmpt 5176  ran crn 5624  wf 6482  cfv 6486  (class class class)co 7353  infcinf 9350  0cc0 11028  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  +crp 12911  -𝑒cxne 13029   +𝑒 cxad 13030  [,]cicc 13269  distcds 17188  *𝑠cxrs 17422  ∞Metcxmet 21264  MetOpencmopn 21269   Cn ccn 23127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-ec 8634  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-icc 13273  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-tset 17198  df-ple 17199  df-ds 17201  df-topgen 17365  df-xrs 17424  df-psmet 21271  df-xmet 21272  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-cn 23130  df-cnp 23131
This theorem is referenced by:  metdscn2  24762
  Copyright terms: Public domain W3C validator