MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscn Structured version   Visualization version   GIF version

Theorem metdscn 23398
Description: The function 𝐹 which gives the distance from a point to a set is a continuous function into the metric topology of the extended reals. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metdscn.c 𝐶 = (dist‘ℝ*𝑠)
metdscn.k 𝐾 = (MetOpen‘𝐶)
Assertion
Ref Expression
metdscn ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem metdscn
Dummy variables 𝑤 𝑟 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metdscn.f . . . 4 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
21metdsf 23390 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
3 iccssxr 12814 . . 3 (0[,]+∞) ⊆ ℝ*
4 fss 6526 . . 3 ((𝐹:𝑋⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐹:𝑋⟶ℝ*)
52, 3, 4sylancl 586 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶ℝ*)
6 simprr 769 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
75ad2antrr 722 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝐹:𝑋⟶ℝ*)
8 simplrl 773 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑧𝑋)
97, 8ffvelrnd 6850 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝐹𝑧) ∈ ℝ*)
10 simprl 767 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑤𝑋)
117, 10ffvelrnd 6850 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝐹𝑤) ∈ ℝ*)
12 metdscn.c . . . . . . . . 9 𝐶 = (dist‘ℝ*𝑠)
1312xrsdsval 20524 . . . . . . . 8 (((𝐹𝑧) ∈ ℝ* ∧ (𝐹𝑤) ∈ ℝ*) → ((𝐹𝑧)𝐶(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))))
149, 11, 13syl2anc 584 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧)𝐶(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))))
15 metdscn.j . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
16 metdscn.k . . . . . . . . 9 𝐾 = (MetOpen‘𝐶)
17 simplll 771 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝐷 ∈ (∞Met‘𝑋))
18 simpllr 772 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑆𝑋)
19 simplrr 774 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑟 ∈ ℝ+)
20 xmetsym 22891 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑤𝑋𝑧𝑋) → (𝑤𝐷𝑧) = (𝑧𝐷𝑤))
2117, 10, 8, 20syl3anc 1365 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑤𝐷𝑧) = (𝑧𝐷𝑤))
22 simprr 769 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑧𝐷𝑤) < 𝑟)
2321, 22eqbrtrd 5085 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑤𝐷𝑧) < 𝑟)
241, 15, 12, 16, 17, 18, 10, 8, 19, 23metdscnlem 23397 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟)
251, 15, 12, 16, 17, 18, 8, 10, 19, 22metdscnlem 23397 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟)
26 breq1 5066 . . . . . . . . 9 (((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) → (((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟 ↔ if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟))
27 breq1 5066 . . . . . . . . 9 (((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) → (((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟 ↔ if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟))
2826, 27ifboth 4508 . . . . . . . 8 ((((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟 ∧ ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟) → if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟)
2924, 25, 28syl2anc 584 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟)
3014, 29eqbrtrd 5085 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟)
3130expr 457 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ 𝑤𝑋) → ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
3231ralrimiva 3187 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∀𝑤𝑋 ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
33 breq2 5067 . . . . 5 (𝑠 = 𝑟 → ((𝑧𝐷𝑤) < 𝑠 ↔ (𝑧𝐷𝑤) < 𝑟))
3433rspceaimv 3632 . . . 4 ((𝑟 ∈ ℝ+ ∧ ∀𝑤𝑋 ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
356, 32, 34syl2anc 584 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
3635ralrimivva 3196 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
37 simpl 483 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3812xrsxmet 23351 . . 3 𝐶 ∈ (∞Met‘ℝ*)
3915, 16metcn 23087 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ (∞Met‘ℝ*)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ* ∧ ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))))
4037, 38, 39sylancl 586 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ* ∧ ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))))
415, 36, 40mpbir2and 709 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wral 3143  wrex 3144  wss 3940  ifcif 4470   class class class wbr 5063  cmpt 5143  ran crn 5555  wf 6350  cfv 6354  (class class class)co 7150  infcinf 8899  0cc0 10531  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  +crp 12384  -𝑒cxne 12499   +𝑒 cxad 12500  [,]cicc 12736  distcds 16569  *𝑠cxrs 16768  ∞Metcxmet 20465  MetOpencmopn 20470   Cn ccn 21767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-ec 8286  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-icc 12740  df-fz 12888  df-seq 13365  df-exp 13425  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-plusg 16573  df-mulr 16574  df-tset 16579  df-ple 16580  df-ds 16582  df-topgen 16712  df-xrs 16770  df-psmet 20472  df-xmet 20473  df-bl 20475  df-mopn 20476  df-top 21437  df-topon 21454  df-bases 21489  df-cn 21770  df-cnp 21771
This theorem is referenced by:  metdscn2  23399
  Copyright terms: Public domain W3C validator