MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscn Structured version   Visualization version   GIF version

Theorem metdscn 24878
Description: The function 𝐹 which gives the distance from a point to a set is a continuous function into the metric topology of the extended reals. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metdscn.c 𝐶 = (dist‘ℝ*𝑠)
metdscn.k 𝐾 = (MetOpen‘𝐶)
Assertion
Ref Expression
metdscn ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐽(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem metdscn
Dummy variables 𝑤 𝑟 𝑧 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metdscn.f . . . 4 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
21metdsf 24870 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
3 iccssxr 13470 . . 3 (0[,]+∞) ⊆ ℝ*
4 fss 6752 . . 3 ((𝐹:𝑋⟶(0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐹:𝑋⟶ℝ*)
52, 3, 4sylancl 586 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶ℝ*)
6 simprr 773 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ+)
75ad2antrr 726 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝐹:𝑋⟶ℝ*)
8 simplrl 777 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑧𝑋)
97, 8ffvelcdmd 7105 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝐹𝑧) ∈ ℝ*)
10 simprl 771 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑤𝑋)
117, 10ffvelcdmd 7105 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝐹𝑤) ∈ ℝ*)
12 metdscn.c . . . . . . . . 9 𝐶 = (dist‘ℝ*𝑠)
1312xrsdsval 21428 . . . . . . . 8 (((𝐹𝑧) ∈ ℝ* ∧ (𝐹𝑤) ∈ ℝ*) → ((𝐹𝑧)𝐶(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))))
149, 11, 13syl2anc 584 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧)𝐶(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))))
15 metdscn.j . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
16 metdscn.k . . . . . . . . 9 𝐾 = (MetOpen‘𝐶)
17 simplll 775 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝐷 ∈ (∞Met‘𝑋))
18 simpllr 776 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑆𝑋)
19 simplrr 778 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → 𝑟 ∈ ℝ+)
20 xmetsym 24357 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑤𝑋𝑧𝑋) → (𝑤𝐷𝑧) = (𝑧𝐷𝑤))
2117, 10, 8, 20syl3anc 1373 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑤𝐷𝑧) = (𝑧𝐷𝑤))
22 simprr 773 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑧𝐷𝑤) < 𝑟)
2321, 22eqbrtrd 5165 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → (𝑤𝐷𝑧) < 𝑟)
241, 15, 12, 16, 17, 18, 10, 8, 19, 23metdscnlem 24877 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟)
251, 15, 12, 16, 17, 18, 8, 10, 19, 22metdscnlem 24877 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟)
26 breq1 5146 . . . . . . . . 9 (((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) → (((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟 ↔ if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟))
27 breq1 5146 . . . . . . . . 9 (((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) = if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) → (((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟 ↔ if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟))
2826, 27ifboth 4565 . . . . . . . 8 ((((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)) < 𝑟 ∧ ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤)) < 𝑟) → if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟)
2924, 25, 28syl2anc 584 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → if((𝐹𝑧) ≤ (𝐹𝑤), ((𝐹𝑤) +𝑒 -𝑒(𝐹𝑧)), ((𝐹𝑧) +𝑒 -𝑒(𝐹𝑤))) < 𝑟)
3014, 29eqbrtrd 5165 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ (𝑤𝑋 ∧ (𝑧𝐷𝑤) < 𝑟)) → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟)
3130expr 456 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) ∧ 𝑤𝑋) → ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
3231ralrimiva 3146 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∀𝑤𝑋 ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
33 breq2 5147 . . . . 5 (𝑠 = 𝑟 → ((𝑧𝐷𝑤) < 𝑠 ↔ (𝑧𝐷𝑤) < 𝑟))
3433rspceaimv 3628 . . . 4 ((𝑟 ∈ ℝ+ ∧ ∀𝑤𝑋 ((𝑧𝐷𝑤) < 𝑟 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
356, 32, 34syl2anc 584 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
3635ralrimivva 3202 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))
37 simpl 482 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐷 ∈ (∞Met‘𝑋))
3812xrsxmet 24831 . . 3 𝐶 ∈ (∞Met‘ℝ*)
3915, 16metcn 24556 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐶 ∈ (∞Met‘ℝ*)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ* ∧ ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))))
4037, 38, 39sylancl 586 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ* ∧ ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑤𝑋 ((𝑧𝐷𝑤) < 𝑠 → ((𝐹𝑧)𝐶(𝐹𝑤)) < 𝑟))))
415, 36, 40mpbir2and 713 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225  ran crn 5686  wf 6557  cfv 6561  (class class class)co 7431  infcinf 9481  0cc0 11155  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  +crp 13034  -𝑒cxne 13151   +𝑒 cxad 13152  [,]cicc 13390  distcds 17306  *𝑠cxrs 17545  ∞Metcxmet 21349  MetOpencmopn 21354   Cn ccn 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-tset 17316  df-ple 17317  df-ds 17319  df-topgen 17488  df-xrs 17547  df-psmet 21356  df-xmet 21357  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cn 23235  df-cnp 23236
This theorem is referenced by:  metdscn2  24879
  Copyright terms: Public domain W3C validator