![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > idcnop | Structured version Visualization version GIF version |
Description: The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idcnop | ⊢ ( I ↾ ℋ) ∈ ContOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6870 | . . 3 ⊢ ( I ↾ ℋ): ℋ–1-1-onto→ ℋ | |
2 | f1of 6832 | . . 3 ⊢ (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ⟶ ℋ) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( I ↾ ℋ): ℋ⟶ ℋ |
4 | id 22 | . . . 4 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ+) | |
5 | fvresi 7172 | . . . . . . . . 9 ⊢ (𝑤 ∈ ℋ → (( I ↾ ℋ)‘𝑤) = 𝑤) | |
6 | fvresi 7172 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥) | |
7 | 5, 6 | oveqan12rd 7431 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥)) = (𝑤 −ℎ 𝑥)) |
8 | 7 | fveq2d 6894 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) = (normℎ‘(𝑤 −ℎ 𝑥))) |
9 | 8 | breq1d 5157 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦 ↔ (normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦)) |
10 | 9 | biimprd 247 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
11 | 10 | ralrimiva 3144 | . . . 4 ⊢ (𝑥 ∈ ℋ → ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
12 | breq2 5151 | . . . . 5 ⊢ (𝑧 = 𝑦 → ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 ↔ (normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦)) | |
13 | 12 | rspceaimv 3616 | . . . 4 ⊢ ((𝑦 ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
14 | 4, 11, 13 | syl2anr 595 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
15 | 14 | rgen2 3195 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦) |
16 | elcnop 31377 | . 2 ⊢ (( I ↾ ℋ) ∈ ContOp ↔ (( I ↾ ℋ): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦))) | |
17 | 3, 15, 16 | mpbir2an 707 | 1 ⊢ ( I ↾ ℋ) ∈ ContOp |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2104 ∀wral 3059 ∃wrex 3068 class class class wbr 5147 I cid 5572 ↾ cres 5677 ⟶wf 6538 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7411 < clt 11252 ℝ+crp 12978 ℋchba 30439 normℎcno 30443 −ℎ cmv 30445 ContOpccop 30466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-hilex 30519 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 df-cnop 31360 |
This theorem is referenced by: nmcopex 31549 nmcoplb 31550 |
Copyright terms: Public domain | W3C validator |