Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > idcnop | Structured version Visualization version GIF version |
Description: The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idcnop | ⊢ ( I ↾ ℋ) ∈ ContOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6749 | . . 3 ⊢ ( I ↾ ℋ): ℋ–1-1-onto→ ℋ | |
2 | f1of 6712 | . . 3 ⊢ (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ⟶ ℋ) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( I ↾ ℋ): ℋ⟶ ℋ |
4 | id 22 | . . . 4 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ+) | |
5 | fvresi 7039 | . . . . . . . . 9 ⊢ (𝑤 ∈ ℋ → (( I ↾ ℋ)‘𝑤) = 𝑤) | |
6 | fvresi 7039 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥) | |
7 | 5, 6 | oveqan12rd 7288 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥)) = (𝑤 −ℎ 𝑥)) |
8 | 7 | fveq2d 6772 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) = (normℎ‘(𝑤 −ℎ 𝑥))) |
9 | 8 | breq1d 5088 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦 ↔ (normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦)) |
10 | 9 | biimprd 247 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
11 | 10 | ralrimiva 3109 | . . . 4 ⊢ (𝑥 ∈ ℋ → ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
12 | breq2 5082 | . . . . 5 ⊢ (𝑧 = 𝑦 → ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 ↔ (normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦)) | |
13 | 12 | rspceaimv 3565 | . . . 4 ⊢ ((𝑦 ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
14 | 4, 11, 13 | syl2anr 596 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
15 | 14 | rgen2 3128 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦) |
16 | elcnop 30198 | . 2 ⊢ (( I ↾ ℋ) ∈ ContOp ↔ (( I ↾ ℋ): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦))) | |
17 | 3, 15, 16 | mpbir2an 707 | 1 ⊢ ( I ↾ ℋ) ∈ ContOp |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 class class class wbr 5078 I cid 5487 ↾ cres 5590 ⟶wf 6426 –1-1-onto→wf1o 6429 ‘cfv 6430 (class class class)co 7268 < clt 10993 ℝ+crp 12712 ℋchba 29260 normℎcno 29264 −ℎ cmv 29266 ContOpccop 29287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-hilex 29340 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-map 8591 df-cnop 30181 |
This theorem is referenced by: nmcopex 30370 nmcoplb 30371 |
Copyright terms: Public domain | W3C validator |