![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > idcnop | Structured version Visualization version GIF version |
Description: The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idcnop | ⊢ ( I ↾ ℋ) ∈ ContOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6415 | . . 3 ⊢ ( I ↾ ℋ): ℋ–1-1-onto→ ℋ | |
2 | f1of 6378 | . . 3 ⊢ (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ⟶ ℋ) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( I ↾ ℋ): ℋ⟶ ℋ |
4 | id 22 | . . . 4 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ+) | |
5 | fvresi 6691 | . . . . . . . . 9 ⊢ (𝑤 ∈ ℋ → (( I ↾ ℋ)‘𝑤) = 𝑤) | |
6 | fvresi 6691 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥) | |
7 | 5, 6 | oveqan12rd 6925 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥)) = (𝑤 −ℎ 𝑥)) |
8 | 7 | fveq2d 6437 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) = (normℎ‘(𝑤 −ℎ 𝑥))) |
9 | 8 | breq1d 4883 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦 ↔ (normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦)) |
10 | 9 | biimprd 240 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
11 | 10 | ralrimiva 3175 | . . . 4 ⊢ (𝑥 ∈ ℋ → ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
12 | breq2 4877 | . . . . 5 ⊢ (𝑧 = 𝑦 → ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 ↔ (normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦)) | |
13 | 12 | rspceaimv 3534 | . . . 4 ⊢ ((𝑦 ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
14 | 4, 11, 13 | syl2anr 592 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
15 | 14 | rgen2 3184 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦) |
16 | elcnop 29271 | . 2 ⊢ (( I ↾ ℋ) ∈ ContOp ↔ (( I ↾ ℋ): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦))) | |
17 | 3, 15, 16 | mpbir2an 704 | 1 ⊢ ( I ↾ ℋ) ∈ ContOp |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2166 ∀wral 3117 ∃wrex 3118 class class class wbr 4873 I cid 5249 ↾ cres 5344 ⟶wf 6119 –1-1-onto→wf1o 6122 ‘cfv 6123 (class class class)co 6905 < clt 10391 ℝ+crp 12112 ℋchba 28331 normℎcno 28335 −ℎ cmv 28337 ContOpccop 28358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-hilex 28411 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-map 8124 df-cnop 29254 |
This theorem is referenced by: nmcopex 29443 nmcoplb 29444 |
Copyright terms: Public domain | W3C validator |