![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > idcnop | Structured version Visualization version GIF version |
Description: The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idcnop | ⊢ ( I ↾ ℋ) ∈ ContOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6869 | . . 3 ⊢ ( I ↾ ℋ): ℋ–1-1-onto→ ℋ | |
2 | f1of 6831 | . . 3 ⊢ (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ⟶ ℋ) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( I ↾ ℋ): ℋ⟶ ℋ |
4 | id 22 | . . . 4 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ+) | |
5 | fvresi 7168 | . . . . . . . . 9 ⊢ (𝑤 ∈ ℋ → (( I ↾ ℋ)‘𝑤) = 𝑤) | |
6 | fvresi 7168 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥) | |
7 | 5, 6 | oveqan12rd 7426 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥)) = (𝑤 −ℎ 𝑥)) |
8 | 7 | fveq2d 6893 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) = (normℎ‘(𝑤 −ℎ 𝑥))) |
9 | 8 | breq1d 5158 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦 ↔ (normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦)) |
10 | 9 | biimprd 247 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
11 | 10 | ralrimiva 3147 | . . . 4 ⊢ (𝑥 ∈ ℋ → ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
12 | breq2 5152 | . . . . 5 ⊢ (𝑧 = 𝑦 → ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 ↔ (normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦)) | |
13 | 12 | rspceaimv 3617 | . . . 4 ⊢ ((𝑦 ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
14 | 4, 11, 13 | syl2anr 598 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
15 | 14 | rgen2 3198 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦) |
16 | elcnop 31098 | . 2 ⊢ (( I ↾ ℋ) ∈ ContOp ↔ (( I ↾ ℋ): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦))) | |
17 | 3, 15, 16 | mpbir2an 710 | 1 ⊢ ( I ↾ ℋ) ∈ ContOp |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 class class class wbr 5148 I cid 5573 ↾ cres 5678 ⟶wf 6537 –1-1-onto→wf1o 6540 ‘cfv 6541 (class class class)co 7406 < clt 11245 ℝ+crp 12971 ℋchba 30160 normℎcno 30164 −ℎ cmv 30166 ContOpccop 30187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-hilex 30240 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-map 8819 df-cnop 31081 |
This theorem is referenced by: nmcopex 31270 nmcoplb 31271 |
Copyright terms: Public domain | W3C validator |