HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  idcnop Structured version   Visualization version   GIF version

Theorem idcnop 29743
Description: The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
idcnop ( I ↾ ℋ) ∈ ContOp

Proof of Theorem idcnop
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6628 . . 3 ( I ↾ ℋ): ℋ–1-1-onto→ ℋ
2 f1of 6591 . . 3 (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ⟶ ℋ)
31, 2ax-mp 5 . 2 ( I ↾ ℋ): ℋ⟶ ℋ
4 id 22 . . . 4 (𝑦 ∈ ℝ+𝑦 ∈ ℝ+)
5 fvresi 6911 . . . . . . . . 9 (𝑤 ∈ ℋ → (( I ↾ ℋ)‘𝑤) = 𝑤)
6 fvresi 6911 . . . . . . . . 9 (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥)
75, 6oveqan12rd 7153 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥)) = (𝑤 𝑥))
87fveq2d 6650 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) = (norm‘(𝑤 𝑥)))
98breq1d 5052 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦 ↔ (norm‘(𝑤 𝑥)) < 𝑦))
109biimprd 250 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((norm‘(𝑤 𝑥)) < 𝑦 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦))
1110ralrimiva 3169 . . . 4 (𝑥 ∈ ℋ → ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦))
12 breq2 5046 . . . . 5 (𝑧 = 𝑦 → ((norm‘(𝑤 𝑥)) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < 𝑦))
1312rspceaimv 3607 . . . 4 ((𝑦 ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦))
144, 11, 13syl2anr 598 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦))
1514rgen2 3190 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦)
16 elcnop 29619 . 2 (( I ↾ ℋ) ∈ ContOp ↔ (( I ↾ ℋ): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦)))
173, 15, 16mpbir2an 709 1 ( I ↾ ℋ) ∈ ContOp
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wral 3125  wrex 3126   class class class wbr 5042   I cid 5435  cres 5533  wf 6327  1-1-ontowf1o 6330  cfv 6331  (class class class)co 7133   < clt 10653  +crp 12368  chba 28681  normcno 28685   cmv 28687  ContOpccop 28708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-hilex 28761
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3753  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-ov 7136  df-oprab 7137  df-mpo 7138  df-map 8386  df-cnop 29602
This theorem is referenced by:  nmcopex  29791  nmcoplb  29792
  Copyright terms: Public domain W3C validator