HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  idcnop Structured version   Visualization version   GIF version

Theorem idcnop 30351
Description: The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
idcnop ( I ↾ ℋ) ∈ ContOp

Proof of Theorem idcnop
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6746 . . 3 ( I ↾ ℋ): ℋ–1-1-onto→ ℋ
2 f1of 6708 . . 3 (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ⟶ ℋ)
31, 2ax-mp 5 . 2 ( I ↾ ℋ): ℋ⟶ ℋ
4 id 22 . . . 4 (𝑦 ∈ ℝ+𝑦 ∈ ℝ+)
5 fvresi 7037 . . . . . . . . 9 (𝑤 ∈ ℋ → (( I ↾ ℋ)‘𝑤) = 𝑤)
6 fvresi 7037 . . . . . . . . 9 (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥)
75, 6oveqan12rd 7287 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥)) = (𝑤 𝑥))
87fveq2d 6770 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) = (norm‘(𝑤 𝑥)))
98breq1d 5083 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦 ↔ (norm‘(𝑤 𝑥)) < 𝑦))
109biimprd 247 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((norm‘(𝑤 𝑥)) < 𝑦 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦))
1110ralrimiva 3108 . . . 4 (𝑥 ∈ ℋ → ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦))
12 breq2 5077 . . . . 5 (𝑧 = 𝑦 → ((norm‘(𝑤 𝑥)) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < 𝑦))
1312rspceaimv 3564 . . . 4 ((𝑦 ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦))
144, 11, 13syl2anr 597 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦))
1514rgen2 3127 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦)
16 elcnop 30227 . 2 (( I ↾ ℋ) ∈ ContOp ↔ (( I ↾ ℋ): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((( I ↾ ℋ)‘𝑤) − (( I ↾ ℋ)‘𝑥))) < 𝑦)))
173, 15, 16mpbir2an 708 1 ( I ↾ ℋ) ∈ ContOp
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3064  wrex 3065   class class class wbr 5073   I cid 5483  cres 5586  wf 6422  1-1-ontowf1o 6425  cfv 6426  (class class class)co 7267   < clt 11019  +crp 12740  chba 29289  normcno 29293   cmv 29295  ContOpccop 29316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-hilex 29369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-sbc 3716  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-map 8604  df-cnop 30210
This theorem is referenced by:  nmcopex  30399  nmcoplb  30400
  Copyright terms: Public domain W3C validator