![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > idcnop | Structured version Visualization version GIF version |
Description: The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
idcnop | ⊢ ( I ↾ ℋ) ∈ ContOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6876 | . . 3 ⊢ ( I ↾ ℋ): ℋ–1-1-onto→ ℋ | |
2 | f1of 6838 | . . 3 ⊢ (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ⟶ ℋ) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ( I ↾ ℋ): ℋ⟶ ℋ |
4 | id 22 | . . . 4 ⊢ (𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ+) | |
5 | fvresi 7182 | . . . . . . . . 9 ⊢ (𝑤 ∈ ℋ → (( I ↾ ℋ)‘𝑤) = 𝑤) | |
6 | fvresi 7182 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥) | |
7 | 5, 6 | oveqan12rd 7439 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥)) = (𝑤 −ℎ 𝑥)) |
8 | 7 | fveq2d 6900 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) = (normℎ‘(𝑤 −ℎ 𝑥))) |
9 | 8 | breq1d 5159 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦 ↔ (normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦)) |
10 | 9 | biimprd 247 | . . . . 5 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
11 | 10 | ralrimiva 3135 | . . . 4 ⊢ (𝑥 ∈ ℋ → ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
12 | breq2 5153 | . . . . 5 ⊢ (𝑧 = 𝑦 → ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 ↔ (normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦)) | |
13 | 12 | rspceaimv 3612 | . . . 4 ⊢ ((𝑦 ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
14 | 4, 11, 13 | syl2anr 595 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦)) |
15 | 14 | rgen2 3187 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦) |
16 | elcnop 31739 | . 2 ⊢ (( I ↾ ℋ) ∈ ContOp ↔ (( I ↾ ℋ): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((( I ↾ ℋ)‘𝑤) −ℎ (( I ↾ ℋ)‘𝑥))) < 𝑦))) | |
17 | 3, 15, 16 | mpbir2an 709 | 1 ⊢ ( I ↾ ℋ) ∈ ContOp |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 class class class wbr 5149 I cid 5575 ↾ cres 5680 ⟶wf 6545 –1-1-onto→wf1o 6548 ‘cfv 6549 (class class class)co 7419 < clt 11280 ℝ+crp 13009 ℋchba 30801 normℎcno 30805 −ℎ cmv 30807 ContOpccop 30828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-hilex 30881 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-map 8847 df-cnop 31722 |
This theorem is referenced by: nmcopex 31911 nmcoplb 31912 |
Copyright terms: Public domain | W3C validator |