MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reccn2 Structured version   Visualization version   GIF version

Theorem reccn2 15548
Description: The reciprocal function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) (Revised by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
reccn2.t 𝑇 = (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2))
Assertion
Ref Expression
reccn2 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑦,𝑇,𝑧

Proof of Theorem reccn2
StepHypRef Expression
1 reccn2.t . . 3 𝑇 = (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2))
2 1rp 12985 . . . . 5 1 ∈ ℝ+
3 simpl 482 . . . . . . . 8 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ (ℂ ∖ {0}))
4 eldifsn 4790 . . . . . . . 8 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
53, 4sylib 217 . . . . . . 7 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
6 absrpcl 15242 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
75, 6syl 17 . . . . . 6 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → (abs‘𝐴) ∈ ℝ+)
8 rpmulcl 13004 . . . . . 6 (((abs‘𝐴) ∈ ℝ+𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
97, 8sylancom 587 . . . . 5 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
10 ifcl 4573 . . . . 5 ((1 ∈ ℝ+ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ+) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ+)
112, 9, 10sylancr 586 . . . 4 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ+)
127rphalfcld 13035 . . . 4 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) / 2) ∈ ℝ+)
1311, 12rpmulcld 13039 . . 3 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ∈ ℝ+)
141, 13eqeltrid 2836 . 2 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → 𝑇 ∈ ℝ+)
155adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
1615simpld 494 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐴 ∈ ℂ)
17 simprl 768 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ (ℂ ∖ {0}))
18 eldifsn 4790 . . . . . . . . . . 11 (𝑧 ∈ (ℂ ∖ {0}) ↔ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
1917, 18sylib 217 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
2019simpld 494 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ ℂ)
2116, 20mulcld 11241 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) ∈ ℂ)
22 mulne0 11863 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0)) → (𝐴 · 𝑧) ≠ 0)
2315, 19, 22syl2anc 583 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) ≠ 0)
2416, 20, 21, 23divsubdird 12036 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))))
2516mulridd 11238 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 1) = 𝐴)
2625oveq1d 7427 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (𝐴 / (𝐴 · 𝑧)))
27 1cnd 11216 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℂ)
28 divcan5 11923 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (1 / 𝑧))
2927, 19, 15, 28syl3anc 1370 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (1 / 𝑧))
3026, 29eqtr3d 2773 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 / (𝐴 · 𝑧)) = (1 / 𝑧))
3120mulridd 11238 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 1) = 𝑧)
3220, 16mulcomd 11242 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 𝐴) = (𝐴 · 𝑧))
3331, 32oveq12d 7430 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (𝑧 / (𝐴 · 𝑧)))
34 divcan5 11923 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (1 / 𝐴))
3527, 15, 19, 34syl3anc 1370 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (1 / 𝐴))
3633, 35eqtr3d 2773 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 / (𝐴 · 𝑧)) = (1 / 𝐴))
3730, 36oveq12d 7430 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))) = ((1 / 𝑧) − (1 / 𝐴)))
3824, 37eqtrd 2771 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((1 / 𝑧) − (1 / 𝐴)))
3938fveq2d 6895 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = (abs‘((1 / 𝑧) − (1 / 𝐴))))
4016, 20subcld 11578 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴𝑧) ∈ ℂ)
4140, 21, 23absdivd 15409 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4239, 41eqtr3d 2773 . . . . 5 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4316, 20abssubd 15407 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) = (abs‘(𝑧𝐴)))
4420, 16subcld 11578 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧𝐴) ∈ ℂ)
4544abscld 15390 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) ∈ ℝ)
4643, 45eqeltrd 2832 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) ∈ ℝ)
4714adantr 480 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ+)
4847rpred 13023 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ)
4921abscld 15390 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ)
50 rpre 12989 . . . . . . . . 9 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
5150ad2antlr 724 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℝ)
5249, 51remulcld 11251 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) ∈ ℝ)
53 simprr 770 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) < 𝑇)
5443, 53eqbrtrd 5170 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < 𝑇)
559adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
5655rpred 13023 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ)
5712adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ+)
5857rpred 13023 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ)
5956, 58remulcld 11251 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) ∈ ℝ)
60 1re 11221 . . . . . . . . . . 11 1 ∈ ℝ
61 min2 13176 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ ((abs‘𝐴) · 𝐵))
6260, 56, 61sylancr 586 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ ((abs‘𝐴) · 𝐵))
6311adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ+)
6463rpred 13023 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ)
6564, 56, 57lemul1d 13066 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ ((abs‘𝐴) · 𝐵) ↔ (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2))))
6662, 65mpbid 231 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
671, 66eqbrtrid 5183 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
6820abscld 15390 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℝ)
6916abscld 15390 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℝ)
7069recnd 11249 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℂ)
71702halvesd 12465 . . . . . . . . . . . 12 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) = (abs‘𝐴))
7269, 68resubcld 11649 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ∈ ℝ)
7316, 20abs2difd 15411 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ≤ (abs‘(𝐴𝑧)))
74 min1 13175 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ 1)
7560, 56, 74sylancr 586 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ 1)
76 1red 11222 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℝ)
7764, 76, 57lemul1d 13066 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ 1 ↔ (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2))))
7875, 77mpbid 231 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2)))
791, 78eqbrtrid 5183 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (1 · ((abs‘𝐴) / 2)))
8058recnd 11249 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℂ)
8180mullidd 11239 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (1 · ((abs‘𝐴) / 2)) = ((abs‘𝐴) / 2))
8279, 81breqtrd 5174 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ ((abs‘𝐴) / 2))
8346, 48, 58, 54, 82ltletrd 11381 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘𝐴) / 2))
8472, 46, 58, 73, 83lelttrd 11379 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2))
8569, 68, 58ltsubadd2d 11819 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2) ↔ (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
8684, 85mpbid 231 . . . . . . . . . . . 12 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
8771, 86eqbrtrd 5170 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
8858, 68, 58ltadd1d 11814 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) < (abs‘𝑧) ↔ (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
8987, 88mpbird 257 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) < (abs‘𝑧))
9058, 68, 55, 89ltmul2dd 13079 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9116, 20absmuld 15408 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) = ((abs‘𝐴) · (abs‘𝑧)))
9291oveq1d 7427 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · (abs‘𝑧)) · 𝐵))
9368recnd 11249 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℂ)
9451recnd 11249 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℂ)
9570, 93, 94mul32d 11431 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · (abs‘𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9692, 95eqtrd 2771 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9790, 96breqtrrd 5176 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
9848, 59, 52, 67, 97lelttrd 11379 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 < ((abs‘(𝐴 · 𝑧)) · 𝐵))
9946, 48, 52, 54, 98lttrd 11382 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10021, 23absrpcld 15402 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ+)
10146, 51, 100ltdivmuld 13074 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵 ↔ (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵)))
10299, 101mpbird 257 . . . . 5 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵)
10342, 102eqbrtrd 5170 . . . 4 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)
104103expr 456 . . 3 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ 𝑧 ∈ (ℂ ∖ {0})) → ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
105104ralrimiva 3145 . 2 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
106 breq2 5152 . . 3 (𝑦 = 𝑇 → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘(𝑧𝐴)) < 𝑇))
107106rspceaimv 3617 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
10814, 105, 107syl2anc 583 1 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069  cdif 3945  ifcif 4528  {csn 4628   class class class wbr 5148  cfv 6543  (class class class)co 7412  cc 11114  cr 11115  0cc0 11116  1c1 11117   + caddc 11119   · cmul 11121   < clt 11255  cle 11256  cmin 11451   / cdiv 11878  2c2 12274  +crp 12981  abscabs 15188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-sup 9443  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-n0 12480  df-z 12566  df-uz 12830  df-rp 12982  df-seq 13974  df-exp 14035  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190
This theorem is referenced by:  rlimdiv  15599  divcnOLD  24617  divcn  24619  climrec  44630
  Copyright terms: Public domain W3C validator