MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reccn2 Structured version   Visualization version   GIF version

Theorem reccn2 15645
Description: The reciprocal function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) (Revised by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
reccn2.t 𝑇 = (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2))
Assertion
Ref Expression
reccn2 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑦,𝑇,𝑧

Proof of Theorem reccn2
StepHypRef Expression
1 reccn2.t . . 3 𝑇 = (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2))
2 1rp 13063 . . . . 5 1 ∈ ℝ+
3 simpl 482 . . . . . . . 8 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ (ℂ ∖ {0}))
4 eldifsn 4811 . . . . . . . 8 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
53, 4sylib 218 . . . . . . 7 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
6 absrpcl 15339 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
75, 6syl 17 . . . . . 6 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → (abs‘𝐴) ∈ ℝ+)
8 rpmulcl 13082 . . . . . 6 (((abs‘𝐴) ∈ ℝ+𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
97, 8sylancom 587 . . . . 5 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
10 ifcl 4593 . . . . 5 ((1 ∈ ℝ+ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ+) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ+)
112, 9, 10sylancr 586 . . . 4 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ+)
127rphalfcld 13113 . . . 4 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) / 2) ∈ ℝ+)
1311, 12rpmulcld 13117 . . 3 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ∈ ℝ+)
141, 13eqeltrid 2848 . 2 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → 𝑇 ∈ ℝ+)
155adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
1615simpld 494 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐴 ∈ ℂ)
17 simprl 770 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ (ℂ ∖ {0}))
18 eldifsn 4811 . . . . . . . . . . 11 (𝑧 ∈ (ℂ ∖ {0}) ↔ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
1917, 18sylib 218 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
2019simpld 494 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ ℂ)
2116, 20mulcld 11312 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) ∈ ℂ)
22 mulne0 11934 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0)) → (𝐴 · 𝑧) ≠ 0)
2315, 19, 22syl2anc 583 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) ≠ 0)
2416, 20, 21, 23divsubdird 12111 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))))
2516mulridd 11309 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 1) = 𝐴)
2625oveq1d 7465 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (𝐴 / (𝐴 · 𝑧)))
27 1cnd 11287 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℂ)
28 divcan5 11998 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (1 / 𝑧))
2927, 19, 15, 28syl3anc 1371 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (1 / 𝑧))
3026, 29eqtr3d 2782 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 / (𝐴 · 𝑧)) = (1 / 𝑧))
3120mulridd 11309 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 1) = 𝑧)
3220, 16mulcomd 11313 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 𝐴) = (𝐴 · 𝑧))
3331, 32oveq12d 7468 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (𝑧 / (𝐴 · 𝑧)))
34 divcan5 11998 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (1 / 𝐴))
3527, 15, 19, 34syl3anc 1371 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (1 / 𝐴))
3633, 35eqtr3d 2782 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 / (𝐴 · 𝑧)) = (1 / 𝐴))
3730, 36oveq12d 7468 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))) = ((1 / 𝑧) − (1 / 𝐴)))
3824, 37eqtrd 2780 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((1 / 𝑧) − (1 / 𝐴)))
3938fveq2d 6926 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = (abs‘((1 / 𝑧) − (1 / 𝐴))))
4016, 20subcld 11649 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴𝑧) ∈ ℂ)
4140, 21, 23absdivd 15506 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4239, 41eqtr3d 2782 . . . . 5 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4316, 20abssubd 15504 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) = (abs‘(𝑧𝐴)))
4420, 16subcld 11649 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧𝐴) ∈ ℂ)
4544abscld 15487 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) ∈ ℝ)
4643, 45eqeltrd 2844 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) ∈ ℝ)
4714adantr 480 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ+)
4847rpred 13101 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ)
4921abscld 15487 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ)
50 rpre 13067 . . . . . . . . 9 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
5150ad2antlr 726 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℝ)
5249, 51remulcld 11322 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) ∈ ℝ)
53 simprr 772 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) < 𝑇)
5443, 53eqbrtrd 5188 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < 𝑇)
559adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
5655rpred 13101 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ)
5712adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ+)
5857rpred 13101 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ)
5956, 58remulcld 11322 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) ∈ ℝ)
60 1re 11292 . . . . . . . . . . 11 1 ∈ ℝ
61 min2 13254 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ ((abs‘𝐴) · 𝐵))
6260, 56, 61sylancr 586 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ ((abs‘𝐴) · 𝐵))
6311adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ+)
6463rpred 13101 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ)
6564, 56, 57lemul1d 13144 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ ((abs‘𝐴) · 𝐵) ↔ (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2))))
6662, 65mpbid 232 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
671, 66eqbrtrid 5201 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
6820abscld 15487 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℝ)
6916abscld 15487 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℝ)
7069recnd 11320 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℂ)
71702halvesd 12541 . . . . . . . . . . . 12 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) = (abs‘𝐴))
7269, 68resubcld 11720 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ∈ ℝ)
7316, 20abs2difd 15508 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ≤ (abs‘(𝐴𝑧)))
74 min1 13253 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ 1)
7560, 56, 74sylancr 586 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ 1)
76 1red 11293 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℝ)
7764, 76, 57lemul1d 13144 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ 1 ↔ (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2))))
7875, 77mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2)))
791, 78eqbrtrid 5201 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (1 · ((abs‘𝐴) / 2)))
8058recnd 11320 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℂ)
8180mullidd 11310 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (1 · ((abs‘𝐴) / 2)) = ((abs‘𝐴) / 2))
8279, 81breqtrd 5192 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ ((abs‘𝐴) / 2))
8346, 48, 58, 54, 82ltletrd 11452 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘𝐴) / 2))
8472, 46, 58, 73, 83lelttrd 11450 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2))
8569, 68, 58ltsubadd2d 11890 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2) ↔ (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
8684, 85mpbid 232 . . . . . . . . . . . 12 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
8771, 86eqbrtrd 5188 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
8858, 68, 58ltadd1d 11885 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) < (abs‘𝑧) ↔ (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
8987, 88mpbird 257 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) < (abs‘𝑧))
9058, 68, 55, 89ltmul2dd 13157 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9116, 20absmuld 15505 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) = ((abs‘𝐴) · (abs‘𝑧)))
9291oveq1d 7465 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · (abs‘𝑧)) · 𝐵))
9368recnd 11320 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℂ)
9451recnd 11320 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℂ)
9570, 93, 94mul32d 11502 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · (abs‘𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9692, 95eqtrd 2780 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9790, 96breqtrrd 5194 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
9848, 59, 52, 67, 97lelttrd 11450 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 < ((abs‘(𝐴 · 𝑧)) · 𝐵))
9946, 48, 52, 54, 98lttrd 11453 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10021, 23absrpcld 15499 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ+)
10146, 51, 100ltdivmuld 13152 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵 ↔ (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵)))
10299, 101mpbird 257 . . . . 5 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵)
10342, 102eqbrtrd 5188 . . . 4 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)
104103expr 456 . . 3 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ 𝑧 ∈ (ℂ ∖ {0})) → ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
105104ralrimiva 3152 . 2 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
106 breq2 5170 . . 3 (𝑦 = 𝑇 → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘(𝑧𝐴)) < 𝑇))
107106rspceaimv 3641 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
10814, 105, 107syl2anc 583 1 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  ifcif 4548  {csn 4648   class class class wbr 5166  cfv 6575  (class class class)co 7450  cc 11184  cr 11185  0cc0 11186  1c1 11187   + caddc 11189   · cmul 11191   < clt 11326  cle 11327  cmin 11522   / cdiv 11949  2c2 12350  +crp 13059  abscabs 15285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-sup 9513  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-n0 12556  df-z 12642  df-uz 12906  df-rp 13060  df-seq 14055  df-exp 14115  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287
This theorem is referenced by:  rlimdiv  15696  divcnOLD  24911  divcn  24913  climrec  45526
  Copyright terms: Public domain W3C validator