MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reccn2 Structured version   Visualization version   GIF version

Theorem reccn2 14945
Description: The reciprocal function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) (Revised by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
reccn2.t 𝑇 = (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2))
Assertion
Ref Expression
reccn2 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑦,𝑇,𝑧

Proof of Theorem reccn2
StepHypRef Expression
1 reccn2.t . . 3 𝑇 = (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2))
2 1rp 12381 . . . . 5 1 ∈ ℝ+
3 simpl 486 . . . . . . . 8 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ (ℂ ∖ {0}))
4 eldifsn 4680 . . . . . . . 8 (𝐴 ∈ (ℂ ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
53, 4sylib 221 . . . . . . 7 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
6 absrpcl 14640 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
75, 6syl 17 . . . . . 6 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → (abs‘𝐴) ∈ ℝ+)
8 rpmulcl 12400 . . . . . 6 (((abs‘𝐴) ∈ ℝ+𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
97, 8sylancom 591 . . . . 5 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
10 ifcl 4469 . . . . 5 ((1 ∈ ℝ+ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ+) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ+)
112, 9, 10sylancr 590 . . . 4 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ+)
127rphalfcld 12431 . . . 4 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ((abs‘𝐴) / 2) ∈ ℝ+)
1311, 12rpmulcld 12435 . . 3 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ∈ ℝ+)
141, 13eqeltrid 2894 . 2 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → 𝑇 ∈ ℝ+)
155adantr 484 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
1615simpld 498 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐴 ∈ ℂ)
17 simprl 770 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ (ℂ ∖ {0}))
18 eldifsn 4680 . . . . . . . . . . 11 (𝑧 ∈ (ℂ ∖ {0}) ↔ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
1917, 18sylib 221 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
2019simpld 498 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑧 ∈ ℂ)
2116, 20mulcld 10650 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) ∈ ℂ)
22 mulne0 11271 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0)) → (𝐴 · 𝑧) ≠ 0)
2315, 19, 22syl2anc 587 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 𝑧) ≠ 0)
2416, 20, 21, 23divsubdird 11444 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))))
2516mulid1d 10647 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 · 1) = 𝐴)
2625oveq1d 7150 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (𝐴 / (𝐴 · 𝑧)))
27 1cnd 10625 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℂ)
28 divcan5 11331 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (1 / 𝑧))
2927, 19, 15, 28syl3anc 1368 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 · 1) / (𝐴 · 𝑧)) = (1 / 𝑧))
3026, 29eqtr3d 2835 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴 / (𝐴 · 𝑧)) = (1 / 𝑧))
3120mulid1d 10647 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 1) = 𝑧)
3220, 16mulcomd 10651 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 · 𝐴) = (𝐴 · 𝑧))
3331, 32oveq12d 7153 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (𝑧 / (𝐴 · 𝑧)))
34 divcan5 11331 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (1 / 𝐴))
3527, 15, 19, 34syl3anc 1368 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝑧 · 1) / (𝑧 · 𝐴)) = (1 / 𝐴))
3633, 35eqtr3d 2835 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧 / (𝐴 · 𝑧)) = (1 / 𝐴))
3730, 36oveq12d 7153 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴 / (𝐴 · 𝑧)) − (𝑧 / (𝐴 · 𝑧))) = ((1 / 𝑧) − (1 / 𝐴)))
3824, 37eqtrd 2833 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((𝐴𝑧) / (𝐴 · 𝑧)) = ((1 / 𝑧) − (1 / 𝐴)))
3938fveq2d 6649 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = (abs‘((1 / 𝑧) − (1 / 𝐴))))
4016, 20subcld 10986 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝐴𝑧) ∈ ℂ)
4140, 21, 23absdivd 14807 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((𝐴𝑧) / (𝐴 · 𝑧))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4239, 41eqtr3d 2835 . . . . 5 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) = ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))))
4316, 20abssubd 14805 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) = (abs‘(𝑧𝐴)))
4420, 16subcld 10986 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (𝑧𝐴) ∈ ℂ)
4544abscld 14788 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) ∈ ℝ)
4643, 45eqeltrd 2890 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) ∈ ℝ)
4714adantr 484 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ+)
4847rpred 12419 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ∈ ℝ)
4921abscld 14788 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ)
50 rpre 12385 . . . . . . . . 9 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
5150ad2antlr 726 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℝ)
5249, 51remulcld 10660 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) ∈ ℝ)
53 simprr 772 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝑧𝐴)) < 𝑇)
5443, 53eqbrtrd 5052 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < 𝑇)
559adantr 484 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ+)
5655rpred 12419 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) · 𝐵) ∈ ℝ)
5712adantr 484 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ+)
5857rpred 12419 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℝ)
5956, 58remulcld 10660 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) ∈ ℝ)
60 1re 10630 . . . . . . . . . . 11 1 ∈ ℝ
61 min2 12571 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ ((abs‘𝐴) · 𝐵))
6260, 56, 61sylancr 590 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ ((abs‘𝐴) · 𝐵))
6311adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ+)
6463rpred 12419 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ∈ ℝ)
6564, 56, 57lemul1d 12462 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ ((abs‘𝐴) · 𝐵) ↔ (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2))))
6662, 65mpbid 235 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
671, 66eqbrtrid 5065 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)))
6820abscld 14788 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℝ)
6916abscld 14788 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℝ)
7069recnd 10658 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) ∈ ℂ)
71702halvesd 11871 . . . . . . . . . . . 12 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) = (abs‘𝐴))
7269, 68resubcld 11057 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ∈ ℝ)
7316, 20abs2difd 14809 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) ≤ (abs‘(𝐴𝑧)))
74 min1 12570 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ ((abs‘𝐴) · 𝐵) ∈ ℝ) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ 1)
7560, 56, 74sylancr 590 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ 1)
76 1red 10631 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 1 ∈ ℝ)
7764, 76, 57lemul1d 12462 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) ≤ 1 ↔ (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2))))
7875, 77mpbid 235 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (if(1 ≤ ((abs‘𝐴) · 𝐵), 1, ((abs‘𝐴) · 𝐵)) · ((abs‘𝐴) / 2)) ≤ (1 · ((abs‘𝐴) / 2)))
791, 78eqbrtrid 5065 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ (1 · ((abs‘𝐴) / 2)))
8058recnd 10658 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) ∈ ℂ)
8180mulid2d 10648 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (1 · ((abs‘𝐴) / 2)) = ((abs‘𝐴) / 2))
8279, 81breqtrd 5056 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 ≤ ((abs‘𝐴) / 2))
8346, 48, 58, 54, 82ltletrd 10789 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘𝐴) / 2))
8472, 46, 58, 73, 83lelttrd 10787 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2))
8569, 68, 58ltsubadd2d 11227 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) − (abs‘𝑧)) < ((abs‘𝐴) / 2) ↔ (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
8684, 85mpbid 235 . . . . . . . . . . . 12 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝐴) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
8771, 86eqbrtrd 5052 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2)))
8858, 68, 58ltadd1d 11222 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) / 2) < (abs‘𝑧) ↔ (((abs‘𝐴) / 2) + ((abs‘𝐴) / 2)) < ((abs‘𝑧) + ((abs‘𝐴) / 2))))
8987, 88mpbird 260 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘𝐴) / 2) < (abs‘𝑧))
9058, 68, 55, 89ltmul2dd 12475 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9116, 20absmuld 14806 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) = ((abs‘𝐴) · (abs‘𝑧)))
9291oveq1d 7150 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · (abs‘𝑧)) · 𝐵))
9368recnd 10658 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘𝑧) ∈ ℂ)
9451recnd 10658 . . . . . . . . . . 11 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝐵 ∈ ℂ)
9570, 93, 94mul32d 10839 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · (abs‘𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9692, 95eqtrd 2833 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴 · 𝑧)) · 𝐵) = (((abs‘𝐴) · 𝐵) · (abs‘𝑧)))
9790, 96breqtrrd 5058 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘𝐴) · 𝐵) · ((abs‘𝐴) / 2)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
9848, 59, 52, 67, 97lelttrd 10787 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → 𝑇 < ((abs‘(𝐴 · 𝑧)) · 𝐵))
9946, 48, 52, 54, 98lttrd 10790 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵))
10021, 23absrpcld 14800 . . . . . . 7 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘(𝐴 · 𝑧)) ∈ ℝ+)
10146, 51, 100ltdivmuld 12470 . . . . . 6 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵 ↔ (abs‘(𝐴𝑧)) < ((abs‘(𝐴 · 𝑧)) · 𝐵)))
10299, 101mpbird 260 . . . . 5 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → ((abs‘(𝐴𝑧)) / (abs‘(𝐴 · 𝑧))) < 𝐵)
10342, 102eqbrtrd 5052 . . . 4 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ (𝑧 ∈ (ℂ ∖ {0}) ∧ (abs‘(𝑧𝐴)) < 𝑇)) → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)
104103expr 460 . . 3 (((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) ∧ 𝑧 ∈ (ℂ ∖ {0})) → ((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
105104ralrimiva 3149 . 2 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
106 breq2 5034 . . 3 (𝑦 = 𝑇 → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘(𝑧𝐴)) < 𝑇))
107106rspceaimv 3576 . 2 ((𝑇 ∈ ℝ+ ∧ ∀𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑇 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵)) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
10814, 105, 107syl2anc 587 1 ((𝐴 ∈ (ℂ ∖ {0}) ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ (ℂ ∖ {0})((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cdif 3878  ifcif 4425  {csn 4525   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  +crp 12377  abscabs 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587
This theorem is referenced by:  rlimdiv  14994  divcn  23473  climrec  42245
  Copyright terms: Public domain W3C validator