![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimconst | Structured version Visualization version GIF version |
Description: A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
rlimconst | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11220 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | simpllr 773 | . . . . . . . . . 10 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
3 | 2 | subidd 11563 | . . . . . . . . 9 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (𝐵 − 𝐵) = 0) |
4 | 3 | fveq2d 6889 | . . . . . . . 8 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) = (abs‘0)) |
5 | abs0 15238 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
6 | 4, 5 | eqtrdi 2782 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) = 0) |
7 | rpgt0 12992 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ+ → 0 < 𝑦) | |
8 | 7 | ad2antlr 724 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → 0 < 𝑦) |
9 | 6, 8 | eqbrtrd 5163 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) < 𝑦) |
10 | 9 | a1d 25 | . . . . 5 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
11 | 10 | ralrimiva 3140 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) → ∀𝑥 ∈ 𝐴 (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
12 | breq1 5144 | . . . . 5 ⊢ (𝑧 = 0 → (𝑧 ≤ 𝑥 ↔ 0 ≤ 𝑥)) | |
13 | 12 | rspceaimv 3612 | . . . 4 ⊢ ((0 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
14 | 1, 11, 13 | sylancr 586 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
15 | 14 | ralrimiva 3140 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
16 | simplr 766 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
17 | 16 | ralrimiva 3140 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ) |
18 | simpl 482 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → 𝐴 ⊆ ℝ) | |
19 | simpr 484 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
20 | 17, 18, 19 | rlim2 15446 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵 ↔ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦))) |
21 | 15, 20 | mpbird 257 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 ⊆ wss 3943 class class class wbr 5141 ↦ cmpt 5224 ‘cfv 6537 (class class class)co 7405 ℂcc 11110 ℝcr 11111 0cc0 11112 < clt 11252 ≤ cle 11253 − cmin 11448 ℝ+crp 12980 abscabs 15187 ⇝𝑟 crli 15435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-rlim 15439 |
This theorem is referenced by: o1const 15570 rlimneg 15599 caucvgr 15628 fsumrlim 15763 dvfsumrlimge0 25920 dvfsumrlim2 25922 logexprlim 27113 chebbnd2 27365 chto1lb 27366 chpchtlim 27367 dchrisum0lem1 27404 selberglem2 27434 signsplypnf 34091 |
Copyright terms: Public domain | W3C validator |