MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimconst Structured version   Visualization version   GIF version

Theorem rlimconst 15469
Description: A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimconst ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ⇝𝑟 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem rlimconst
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 11136 . . . 4 0 ∈ ℝ
2 simpllr 775 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
32subidd 11481 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (𝐵𝐵) = 0)
43fveq2d 6830 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (abs‘(𝐵𝐵)) = (abs‘0))
5 abs0 15210 . . . . . . . 8 (abs‘0) = 0
64, 5eqtrdi 2780 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (abs‘(𝐵𝐵)) = 0)
7 rpgt0 12924 . . . . . . . 8 (𝑦 ∈ ℝ+ → 0 < 𝑦)
87ad2antlr 727 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 0 < 𝑦)
96, 8eqbrtrd 5117 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (abs‘(𝐵𝐵)) < 𝑦)
109a1d 25 . . . . 5 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (0 ≤ 𝑥 → (abs‘(𝐵𝐵)) < 𝑦))
1110ralrimiva 3121 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) → ∀𝑥𝐴 (0 ≤ 𝑥 → (abs‘(𝐵𝐵)) < 𝑦))
12 breq1 5098 . . . . 5 (𝑧 = 0 → (𝑧𝑥 ↔ 0 ≤ 𝑥))
1312rspceaimv 3585 . . . 4 ((0 ∈ ℝ ∧ ∀𝑥𝐴 (0 ≤ 𝑥 → (abs‘(𝐵𝐵)) < 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐵)) < 𝑦))
141, 11, 13sylancr 587 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐵)) < 𝑦))
1514ralrimiva 3121 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐵)) < 𝑦))
16 simplr 768 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
1716ralrimiva 3121 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑥𝐴 𝐵 ∈ ℂ)
18 simpl 482 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → 𝐴 ⊆ ℝ)
19 simpr 484 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
2017, 18, 19rlim2 15421 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐴𝐵) ⇝𝑟 𝐵 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐵)) < 𝑦)))
2115, 20mpbird 257 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ⇝𝑟 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  wrex 3053  wss 3905   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028   < clt 11168  cle 11169  cmin 11365  +crp 12911  abscabs 15159  𝑟 crli 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-rlim 15414
This theorem is referenced by:  o1const  15545  rlimneg  15572  caucvgr  15601  fsumrlim  15736  dvfsumrlimge0  25953  dvfsumrlim2  25955  logexprlim  27152  chebbnd2  27404  chto1lb  27405  chpchtlim  27406  dchrisum0lem1  27443  selberglem2  27473  signsplypnf  34517
  Copyright terms: Public domain W3C validator