Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimconst | Structured version Visualization version GIF version |
Description: A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
rlimconst | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11023 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | simpllr 774 | . . . . . . . . . 10 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
3 | 2 | subidd 11366 | . . . . . . . . 9 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (𝐵 − 𝐵) = 0) |
4 | 3 | fveq2d 6808 | . . . . . . . 8 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) = (abs‘0)) |
5 | abs0 15042 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
6 | 4, 5 | eqtrdi 2792 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) = 0) |
7 | rpgt0 12788 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ+ → 0 < 𝑦) | |
8 | 7 | ad2antlr 725 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → 0 < 𝑦) |
9 | 6, 8 | eqbrtrd 5103 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) < 𝑦) |
10 | 9 | a1d 25 | . . . . 5 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
11 | 10 | ralrimiva 3140 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) → ∀𝑥 ∈ 𝐴 (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
12 | breq1 5084 | . . . . 5 ⊢ (𝑧 = 0 → (𝑧 ≤ 𝑥 ↔ 0 ≤ 𝑥)) | |
13 | 12 | rspceaimv 3570 | . . . 4 ⊢ ((0 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
14 | 1, 11, 13 | sylancr 588 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
15 | 14 | ralrimiva 3140 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
16 | simplr 767 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
17 | 16 | ralrimiva 3140 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ) |
18 | simpl 484 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → 𝐴 ⊆ ℝ) | |
19 | simpr 486 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
20 | 17, 18, 19 | rlim2 15250 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵 ↔ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦))) |
21 | 15, 20 | mpbird 257 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 ∀wral 3062 ∃wrex 3071 ⊆ wss 3892 class class class wbr 5081 ↦ cmpt 5164 ‘cfv 6458 (class class class)co 7307 ℂcc 10915 ℝcr 10916 0cc0 10917 < clt 11055 ≤ cle 11056 − cmin 11251 ℝ+crp 12776 abscabs 14990 ⇝𝑟 crli 15239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-n0 12280 df-z 12366 df-uz 12629 df-rp 12777 df-seq 13768 df-exp 13829 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-rlim 15243 |
This theorem is referenced by: o1const 15374 rlimneg 15403 caucvgr 15432 fsumrlim 15568 dvfsumrlimge0 25239 dvfsumrlim2 25241 logexprlim 26418 chebbnd2 26670 chto1lb 26671 chpchtlim 26672 dchrisum0lem1 26709 selberglem2 26739 signsplypnf 32574 |
Copyright terms: Public domain | W3C validator |