MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimconst Structured version   Visualization version   GIF version

Theorem rlimconst 15298
Description: A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimconst ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ⇝𝑟 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem rlimconst
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 11023 . . . 4 0 ∈ ℝ
2 simpllr 774 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
32subidd 11366 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (𝐵𝐵) = 0)
43fveq2d 6808 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (abs‘(𝐵𝐵)) = (abs‘0))
5 abs0 15042 . . . . . . . 8 (abs‘0) = 0
64, 5eqtrdi 2792 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (abs‘(𝐵𝐵)) = 0)
7 rpgt0 12788 . . . . . . . 8 (𝑦 ∈ ℝ+ → 0 < 𝑦)
87ad2antlr 725 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 0 < 𝑦)
96, 8eqbrtrd 5103 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (abs‘(𝐵𝐵)) < 𝑦)
109a1d 25 . . . . 5 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (0 ≤ 𝑥 → (abs‘(𝐵𝐵)) < 𝑦))
1110ralrimiva 3140 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) → ∀𝑥𝐴 (0 ≤ 𝑥 → (abs‘(𝐵𝐵)) < 𝑦))
12 breq1 5084 . . . . 5 (𝑧 = 0 → (𝑧𝑥 ↔ 0 ≤ 𝑥))
1312rspceaimv 3570 . . . 4 ((0 ∈ ℝ ∧ ∀𝑥𝐴 (0 ≤ 𝑥 → (abs‘(𝐵𝐵)) < 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐵)) < 𝑦))
141, 11, 13sylancr 588 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐵)) < 𝑦))
1514ralrimiva 3140 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐵)) < 𝑦))
16 simplr 767 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
1716ralrimiva 3140 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑥𝐴 𝐵 ∈ ℂ)
18 simpl 484 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → 𝐴 ⊆ ℝ)
19 simpr 486 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
2017, 18, 19rlim2 15250 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ((𝑥𝐴𝐵) ⇝𝑟 𝐵 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐵)) < 𝑦)))
2115, 20mpbird 257 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥𝐴𝐵) ⇝𝑟 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2104  wral 3062  wrex 3071  wss 3892   class class class wbr 5081  cmpt 5164  cfv 6458  (class class class)co 7307  cc 10915  cr 10916  0cc0 10917   < clt 11055  cle 11056  cmin 11251  +crp 12776  abscabs 14990  𝑟 crli 15239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-n0 12280  df-z 12366  df-uz 12629  df-rp 12777  df-seq 13768  df-exp 13829  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-rlim 15243
This theorem is referenced by:  o1const  15374  rlimneg  15403  caucvgr  15432  fsumrlim  15568  dvfsumrlimge0  25239  dvfsumrlim2  25241  logexprlim  26418  chebbnd2  26670  chto1lb  26671  chpchtlim  26672  dchrisum0lem1  26709  selberglem2  26739  signsplypnf  32574
  Copyright terms: Public domain W3C validator