![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimconst | Structured version Visualization version GIF version |
Description: A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
rlimconst | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11246 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | simpllr 774 | . . . . . . . . . 10 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
3 | 2 | subidd 11589 | . . . . . . . . 9 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (𝐵 − 𝐵) = 0) |
4 | 3 | fveq2d 6896 | . . . . . . . 8 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) = (abs‘0)) |
5 | abs0 15264 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
6 | 4, 5 | eqtrdi 2781 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) = 0) |
7 | rpgt0 13018 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ+ → 0 < 𝑦) | |
8 | 7 | ad2antlr 725 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → 0 < 𝑦) |
9 | 6, 8 | eqbrtrd 5165 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) < 𝑦) |
10 | 9 | a1d 25 | . . . . 5 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
11 | 10 | ralrimiva 3136 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) → ∀𝑥 ∈ 𝐴 (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
12 | breq1 5146 | . . . . 5 ⊢ (𝑧 = 0 → (𝑧 ≤ 𝑥 ↔ 0 ≤ 𝑥)) | |
13 | 12 | rspceaimv 3607 | . . . 4 ⊢ ((0 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
14 | 1, 11, 13 | sylancr 585 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
15 | 14 | ralrimiva 3136 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
16 | simplr 767 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
17 | 16 | ralrimiva 3136 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ) |
18 | simpl 481 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → 𝐴 ⊆ ℝ) | |
19 | simpr 483 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
20 | 17, 18, 19 | rlim2 15472 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵 ↔ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦))) |
21 | 15, 20 | mpbird 256 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ∀wral 3051 ∃wrex 3060 ⊆ wss 3939 class class class wbr 5143 ↦ cmpt 5226 ‘cfv 6543 (class class class)co 7416 ℂcc 11136 ℝcr 11137 0cc0 11138 < clt 11278 ≤ cle 11279 − cmin 11474 ℝ+crp 13006 abscabs 15213 ⇝𝑟 crli 15461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-pm 8846 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-seq 13999 df-exp 14059 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-rlim 15465 |
This theorem is referenced by: o1const 15596 rlimneg 15625 caucvgr 15654 fsumrlim 15789 dvfsumrlimge0 25983 dvfsumrlim2 25985 logexprlim 27176 chebbnd2 27428 chto1lb 27429 chpchtlim 27430 dchrisum0lem1 27467 selberglem2 27497 signsplypnf 34239 |
Copyright terms: Public domain | W3C validator |