![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimconst | Structured version Visualization version GIF version |
Description: A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014.) |
Ref | Expression |
---|---|
rlimconst | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11261 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | simpllr 776 | . . . . . . . . . 10 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
3 | 2 | subidd 11606 | . . . . . . . . 9 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (𝐵 − 𝐵) = 0) |
4 | 3 | fveq2d 6911 | . . . . . . . 8 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) = (abs‘0)) |
5 | abs0 15321 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
6 | 4, 5 | eqtrdi 2791 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) = 0) |
7 | rpgt0 13045 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ+ → 0 < 𝑦) | |
8 | 7 | ad2antlr 727 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → 0 < 𝑦) |
9 | 6, 8 | eqbrtrd 5170 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) < 𝑦) |
10 | 9 | a1d 25 | . . . . 5 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
11 | 10 | ralrimiva 3144 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) → ∀𝑥 ∈ 𝐴 (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
12 | breq1 5151 | . . . . 5 ⊢ (𝑧 = 0 → (𝑧 ≤ 𝑥 ↔ 0 ≤ 𝑥)) | |
13 | 12 | rspceaimv 3628 | . . . 4 ⊢ ((0 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
14 | 1, 11, 13 | sylancr 587 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
15 | 14 | ralrimiva 3144 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
16 | simplr 769 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
17 | 16 | ralrimiva 3144 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ) |
18 | simpl 482 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → 𝐴 ⊆ ℝ) | |
19 | simpr 484 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
20 | 17, 18, 19 | rlim2 15529 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵 ↔ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦))) |
21 | 15, 20 | mpbird 257 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 < clt 11293 ≤ cle 11294 − cmin 11490 ℝ+crp 13032 abscabs 15270 ⇝𝑟 crli 15518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-rlim 15522 |
This theorem is referenced by: o1const 15653 rlimneg 15680 caucvgr 15709 fsumrlim 15844 dvfsumrlimge0 26086 dvfsumrlim2 26088 logexprlim 27284 chebbnd2 27536 chto1lb 27537 chpchtlim 27538 dchrisum0lem1 27575 selberglem2 27605 signsplypnf 34544 |
Copyright terms: Public domain | W3C validator |