| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimconst | Structured version Visualization version GIF version | ||
| Description: A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimconst | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11120 | . . . 4 ⊢ 0 ∈ ℝ | |
| 2 | simpllr 775 | . . . . . . . . . 10 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 3 | 2 | subidd 11466 | . . . . . . . . 9 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (𝐵 − 𝐵) = 0) |
| 4 | 3 | fveq2d 6832 | . . . . . . . 8 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) = (abs‘0)) |
| 5 | abs0 15198 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
| 6 | 4, 5 | eqtrdi 2782 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) = 0) |
| 7 | rpgt0 12909 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ+ → 0 < 𝑦) | |
| 8 | 7 | ad2antlr 727 | . . . . . . 7 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → 0 < 𝑦) |
| 9 | 6, 8 | eqbrtrd 5115 | . . . . . 6 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (abs‘(𝐵 − 𝐵)) < 𝑦) |
| 10 | 9 | a1d 25 | . . . . 5 ⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
| 11 | 10 | ralrimiva 3124 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) → ∀𝑥 ∈ 𝐴 (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
| 12 | breq1 5096 | . . . . 5 ⊢ (𝑧 = 0 → (𝑧 ≤ 𝑥 ↔ 0 ≤ 𝑥)) | |
| 13 | 12 | rspceaimv 3578 | . . . 4 ⊢ ((0 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (0 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
| 14 | 1, 11, 13 | sylancr 587 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
| 15 | 14 | ralrimiva 3124 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦)) |
| 16 | simplr 768 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 17 | 16 | ralrimiva 3124 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ) |
| 18 | simpl 482 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → 𝐴 ⊆ ℝ) | |
| 19 | simpr 484 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 20 | 17, 18, 19 | rlim2 15409 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵 ↔ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑧 ≤ 𝑥 → (abs‘(𝐵 − 𝐵)) < 𝑦))) |
| 21 | 15, 20 | mpbird 257 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6487 (class class class)co 7352 ℂcc 11010 ℝcr 11011 0cc0 11012 < clt 11152 ≤ cle 11153 − cmin 11350 ℝ+crp 12896 abscabs 15147 ⇝𝑟 crli 15398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-n0 12388 df-z 12475 df-uz 12739 df-rp 12897 df-seq 13915 df-exp 13975 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-rlim 15402 |
| This theorem is referenced by: o1const 15533 rlimneg 15560 caucvgr 15589 fsumrlim 15724 dvfsumrlimge0 25970 dvfsumrlim2 25972 logexprlim 27169 chebbnd2 27421 chto1lb 27422 chpchtlim 27423 dchrisum0lem1 27460 selberglem2 27490 signsplypnf 34570 |
| Copyright terms: Public domain | W3C validator |