| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cn1lem | Structured version Visualization version GIF version | ||
| Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) |
| Ref | Expression |
|---|---|
| cn1lem.1 | ⊢ 𝐹:ℂ⟶ℂ |
| cn1lem.2 | ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) |
| Ref | Expression |
|---|---|
| cn1lem | ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
| 2 | simpr 484 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
| 3 | simpll 766 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 4 | cn1lem.2 | . . . . 5 ⊢ ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴))) |
| 6 | cn1lem.1 | . . . . . . . . 9 ⊢ 𝐹:ℂ⟶ℂ | |
| 7 | 6 | ffvelcdmi 7058 | . . . . . . . 8 ⊢ (𝑧 ∈ ℂ → (𝐹‘𝑧) ∈ ℂ) |
| 8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝐹‘𝑧) ∈ ℂ) |
| 9 | 6 | ffvelcdmi 7058 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐹‘𝐴) ∈ ℂ) |
| 10 | 3, 9 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝐹‘𝐴) ∈ ℂ) |
| 11 | 8, 10 | subcld 11540 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → ((𝐹‘𝑧) − (𝐹‘𝐴)) ∈ ℂ) |
| 12 | 11 | abscld 15412 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ∈ ℝ) |
| 13 | 2, 3 | subcld 11540 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝑧 − 𝐴) ∈ ℂ) |
| 14 | 13 | abscld 15412 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧 − 𝐴)) ∈ ℝ) |
| 15 | rpre 12967 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
| 16 | 15 | ad2antlr 727 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℝ) |
| 17 | lelttr 11271 | . . . . 5 ⊢ (((abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ∈ ℝ ∧ (abs‘(𝑧 − 𝐴)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴)) ∧ (abs‘(𝑧 − 𝐴)) < 𝑥) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) | |
| 18 | 12, 14, 16, 17 | syl3anc 1373 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (((abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) ≤ (abs‘(𝑧 − 𝐴)) ∧ (abs‘(𝑧 − 𝐴)) < 𝑥) → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
| 19 | 5, 18 | mpand 695 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
| 20 | 19 | ralrimiva 3126 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
| 21 | breq2 5114 | . . 3 ⊢ (𝑦 = 𝑥 → ((abs‘(𝑧 − 𝐴)) < 𝑦 ↔ (abs‘(𝑧 − 𝐴)) < 𝑥)) | |
| 22 | 21 | rspceaimv 3597 | . 2 ⊢ ((𝑥 ∈ ℝ+ ∧ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑥 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
| 23 | 1, 20, 22 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐹‘𝑧) − (𝐹‘𝐴))) < 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 < clt 11215 ≤ cle 11216 − cmin 11412 ℝ+crp 12958 abscabs 15207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 |
| This theorem is referenced by: abscn2 15572 cjcn2 15573 recn2 15574 imcn2 15575 |
| Copyright terms: Public domain | W3C validator |