MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cn1lem Structured version   Visualization version   GIF version

Theorem cn1lem 15505
Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
cn1lem.1 𝐹:ℂ⟶ℂ
cn1lem.2 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)))
Assertion
Ref Expression
cn1lem ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴,𝑧   𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥,𝑧)

Proof of Theorem cn1lem
StepHypRef Expression
1 simpr 484 . 2 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
2 simpr 484 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
3 simpll 766 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
4 cn1lem.2 . . . . 5 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)))
52, 3, 4syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)))
6 cn1lem.1 . . . . . . . . 9 𝐹:ℂ⟶ℂ
76ffvelcdmi 7016 . . . . . . . 8 (𝑧 ∈ ℂ → (𝐹𝑧) ∈ ℂ)
82, 7syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝐹𝑧) ∈ ℂ)
96ffvelcdmi 7016 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐹𝐴) ∈ ℂ)
103, 9syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝐹𝐴) ∈ ℂ)
118, 10subcld 11472 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → ((𝐹𝑧) − (𝐹𝐴)) ∈ ℂ)
1211abscld 15346 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ∈ ℝ)
132, 3subcld 11472 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝑧𝐴) ∈ ℂ)
1413abscld 15346 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧𝐴)) ∈ ℝ)
15 rpre 12899 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1615ad2antlr 727 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℝ)
17 lelttr 11203 . . . . 5 (((abs‘((𝐹𝑧) − (𝐹𝐴))) ∈ ℝ ∧ (abs‘(𝑧𝐴)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)) ∧ (abs‘(𝑧𝐴)) < 𝑥) → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
1812, 14, 16, 17syl3anc 1373 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (((abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)) ∧ (abs‘(𝑧𝐴)) < 𝑥) → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
195, 18mpand 695 . . 3 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧𝐴)) < 𝑥 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
2019ralrimiva 3124 . 2 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑥 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
21 breq2 5093 . . 3 (𝑦 = 𝑥 → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘(𝑧𝐴)) < 𝑥))
2221rspceaimv 3578 . 2 ((𝑥 ∈ ℝ+ ∧ ∀𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑥 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
231, 20, 22syl2anc 584 1 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  wrex 3056   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005   < clt 11146  cle 11147  cmin 11344  +crp 12890  abscabs 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143
This theorem is referenced by:  abscn2  15506  cjcn2  15507  recn2  15508  imcn2  15509
  Copyright terms: Public domain W3C validator