MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cn1lem Structured version   Visualization version   GIF version

Theorem cn1lem 15619
Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
cn1lem.1 𝐹:ℂ⟶ℂ
cn1lem.2 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)))
Assertion
Ref Expression
cn1lem ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴,𝑧   𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥,𝑧)

Proof of Theorem cn1lem
StepHypRef Expression
1 simpr 484 . 2 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
2 simpr 484 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
3 simpll 766 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝐴 ∈ ℂ)
4 cn1lem.2 . . . . 5 ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)))
52, 3, 4syl2anc 584 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)))
6 cn1lem.1 . . . . . . . . 9 𝐹:ℂ⟶ℂ
76ffvelcdmi 7078 . . . . . . . 8 (𝑧 ∈ ℂ → (𝐹𝑧) ∈ ℂ)
82, 7syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝐹𝑧) ∈ ℂ)
96ffvelcdmi 7078 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐹𝐴) ∈ ℂ)
103, 9syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝐹𝐴) ∈ ℂ)
118, 10subcld 11599 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → ((𝐹𝑧) − (𝐹𝐴)) ∈ ℂ)
1211abscld 15460 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ∈ ℝ)
132, 3subcld 11599 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (𝑧𝐴) ∈ ℂ)
1413abscld 15460 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (abs‘(𝑧𝐴)) ∈ ℝ)
15 rpre 13022 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1615ad2antlr 727 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → 𝑥 ∈ ℝ)
17 lelttr 11330 . . . . 5 (((abs‘((𝐹𝑧) − (𝐹𝐴))) ∈ ℝ ∧ (abs‘(𝑧𝐴)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)) ∧ (abs‘(𝑧𝐴)) < 𝑥) → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
1812, 14, 16, 17syl3anc 1373 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → (((abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)) ∧ (abs‘(𝑧𝐴)) < 𝑥) → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
195, 18mpand 695 . . 3 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) ∧ 𝑧 ∈ ℂ) → ((abs‘(𝑧𝐴)) < 𝑥 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
2019ralrimiva 3133 . 2 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∀𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑥 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
21 breq2 5128 . . 3 (𝑦 = 𝑥 → ((abs‘(𝑧𝐴)) < 𝑦 ↔ (abs‘(𝑧𝐴)) < 𝑥))
2221rspceaimv 3612 . 2 ((𝑥 ∈ ℝ+ ∧ ∀𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑥 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥)) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
231, 20, 22syl2anc 584 1 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3052  wrex 3061   class class class wbr 5124  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133   < clt 11274  cle 11275  cmin 11471  +crp 13013  abscabs 15258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260
This theorem is referenced by:  abscn2  15620  cjcn2  15621  recn2  15622  imcn2  15623
  Copyright terms: Public domain W3C validator