Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blbnd Structured version   Visualization version   GIF version

Theorem blbnd 35225
Description: A ball is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
blbnd ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))

Proof of Theorem blbnd
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → 𝑀 ∈ (∞Met‘𝑋))
2 rexr 10676 . . . . . 6 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
3 blssm 23025 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ*) → (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋)
42, 3syl3an3 1162 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋)
5 xmetres2 22968 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
61, 4, 5syl2anc 587 . . . 4 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
76adantr 484 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
8 rzal 4411 . . . 4 ((𝑌(ball‘𝑀)𝑅) = ∅ → ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
98adantl 485 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
10 isbndx 35220 . . 3 ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ↔ ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)) ∧ ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟)))
117, 9, 10sylanbrc 586 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))
126adantr 484 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
131adantr 484 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑀 ∈ (∞Met‘𝑋))
14 simpl2 1189 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌𝑋)
15 simpl3 1190 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈ ℝ)
16 xbln0 23021 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ*) → ((𝑌(ball‘𝑀)𝑅) ≠ ∅ ↔ 0 < 𝑅))
172, 16syl3an3 1162 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → ((𝑌(ball‘𝑀)𝑅) ≠ ∅ ↔ 0 < 𝑅))
1817biimpa 480 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 0 < 𝑅)
1915, 18elrpd 12416 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈ ℝ+)
20 blcntr 23020 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ+) → 𝑌 ∈ (𝑌(ball‘𝑀)𝑅))
2113, 14, 19, 20syl3anc 1368 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌 ∈ (𝑌(ball‘𝑀)𝑅))
2214, 21elind 4121 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌 ∈ (𝑋 ∩ (𝑌(ball‘𝑀)𝑅)))
2315rexrd 10680 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈ ℝ*)
24 eqid 2798 . . . . . . . 8 (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) = (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅)))
2524blres 23038 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ (𝑋 ∩ (𝑌(ball‘𝑀)𝑅)) ∧ 𝑅 ∈ ℝ*) → (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅)))
2613, 22, 23, 25syl3anc 1368 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅)))
27 inidm 4145 . . . . . 6 ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅)) = (𝑌(ball‘𝑀)𝑅)
2826, 27eqtr2di 2850 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑌(ball‘𝑀)𝑅) = (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅))
29 rspceov 7182 . . . . 5 ((𝑌 ∈ (𝑌(ball‘𝑀)𝑅) ∧ 𝑅 ∈ ℝ+ ∧ (𝑌(ball‘𝑀)𝑅) = (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅)) → ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
3021, 19, 28, 29syl3anc 1368 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
31 isbnd2 35221 . . . 4 (((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) ↔ ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)) ∧ ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟)))
3212, 30, 31sylanbrc 586 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅))
3332simpld 498 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))
3411, 33pm2.61dane 3074 1 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cin 3880  wss 3881  c0 4243   class class class wbr 5030   × cxp 5517  cres 5521  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  *cxr 10663   < clt 10664  +crp 12377  ∞Metcxmet 20076  ballcbl 20078  Bndcbnd 35205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-ec 8274  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-bnd 35217
This theorem is referenced by:  ssbnd  35226  prdsbnd2  35233
  Copyright terms: Public domain W3C validator