Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blbnd Structured version   Visualization version   GIF version

Theorem blbnd 34935
Description: A ball is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
blbnd ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))

Proof of Theorem blbnd
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1130 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → 𝑀 ∈ (∞Met‘𝑋))
2 rexr 10679 . . . . . 6 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
3 blssm 22945 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ*) → (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋)
42, 3syl3an3 1159 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋)
5 xmetres2 22888 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
61, 4, 5syl2anc 584 . . . 4 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
76adantr 481 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
8 rzal 4455 . . . 4 ((𝑌(ball‘𝑀)𝑅) = ∅ → ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
98adantl 482 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
10 isbndx 34930 . . 3 ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ↔ ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)) ∧ ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟)))
117, 9, 10sylanbrc 583 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))
126adantr 481 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
131adantr 481 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑀 ∈ (∞Met‘𝑋))
14 simpl2 1186 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌𝑋)
15 simpl3 1187 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈ ℝ)
16 xbln0 22941 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ*) → ((𝑌(ball‘𝑀)𝑅) ≠ ∅ ↔ 0 < 𝑅))
172, 16syl3an3 1159 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → ((𝑌(ball‘𝑀)𝑅) ≠ ∅ ↔ 0 < 𝑅))
1817biimpa 477 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 0 < 𝑅)
1915, 18elrpd 12421 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈ ℝ+)
20 blcntr 22940 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ+) → 𝑌 ∈ (𝑌(ball‘𝑀)𝑅))
2113, 14, 19, 20syl3anc 1365 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌 ∈ (𝑌(ball‘𝑀)𝑅))
2214, 21elind 4174 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌 ∈ (𝑋 ∩ (𝑌(ball‘𝑀)𝑅)))
2315rexrd 10683 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈ ℝ*)
24 eqid 2825 . . . . . . . 8 (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) = (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅)))
2524blres 22958 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ (𝑋 ∩ (𝑌(ball‘𝑀)𝑅)) ∧ 𝑅 ∈ ℝ*) → (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅)))
2613, 22, 23, 25syl3anc 1365 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅)))
27 inidm 4198 . . . . . 6 ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅)) = (𝑌(ball‘𝑀)𝑅)
2826, 27syl6req 2877 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑌(ball‘𝑀)𝑅) = (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅))
29 rspceov 7198 . . . . 5 ((𝑌 ∈ (𝑌(ball‘𝑀)𝑅) ∧ 𝑅 ∈ ℝ+ ∧ (𝑌(ball‘𝑀)𝑅) = (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅)) → ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
3021, 19, 28, 29syl3anc 1365 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
31 isbnd2 34931 . . . 4 (((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) ↔ ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)) ∧ ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟)))
3212, 30, 31sylanbrc 583 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅))
3332simpld 495 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))
3411, 33pm2.61dane 3108 1 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020  wral 3142  wrex 3143  cin 3938  wss 3939  c0 4294   class class class wbr 5062   × cxp 5551  cres 5555  cfv 6351  (class class class)co 7151  cr 10528  0cc0 10529  *cxr 10666   < clt 10667  +crp 12382  ∞Metcxmet 20448  ballcbl 20450  Bndcbnd 34915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-er 8282  df-ec 8284  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-2 11692  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-psmet 20455  df-xmet 20456  df-met 20457  df-bl 20458  df-bnd 34927
This theorem is referenced by:  ssbnd  34936  prdsbnd2  34943
  Copyright terms: Public domain W3C validator