Step | Hyp | Ref
| Expression |
1 | | simp1 1137 |
. . . . 5
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) → 𝑀 ∈ (∞Met‘𝑋)) |
2 | | rexr 10777 |
. . . . . 6
⊢ (𝑅 ∈ ℝ → 𝑅 ∈
ℝ*) |
3 | | blssm 23183 |
. . . . . 6
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋) |
4 | 2, 3 | syl3an3 1166 |
. . . . 5
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) → (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋) |
5 | | xmetres2 23126 |
. . . . 5
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅))) |
6 | 1, 4, 5 | syl2anc 587 |
. . . 4
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅))) |
7 | 6 | adantr 484 |
. . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅))) |
8 | | rzal 4405 |
. . . 4
⊢ ((𝑌(ball‘𝑀)𝑅) = ∅ → ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟)) |
9 | 8 | adantl 485 |
. . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟)) |
10 | | isbndx 35595 |
. . 3
⊢ ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ↔ ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)) ∧ ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))) |
11 | 7, 9, 10 | sylanbrc 586 |
. 2
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅))) |
12 | 6 | adantr 484 |
. . . 4
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅))) |
13 | 1 | adantr 484 |
. . . . . 6
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑀 ∈ (∞Met‘𝑋)) |
14 | | simpl2 1193 |
. . . . . 6
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌 ∈ 𝑋) |
15 | | simpl3 1194 |
. . . . . . 7
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈ ℝ) |
16 | | xbln0 23179 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → ((𝑌(ball‘𝑀)𝑅) ≠ ∅ ↔ 0 < 𝑅)) |
17 | 2, 16 | syl3an3 1166 |
. . . . . . . 8
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) → ((𝑌(ball‘𝑀)𝑅) ≠ ∅ ↔ 0 < 𝑅)) |
18 | 17 | biimpa 480 |
. . . . . . 7
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 0 < 𝑅) |
19 | 15, 18 | elrpd 12523 |
. . . . . 6
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈
ℝ+) |
20 | | blcntr 23178 |
. . . . . 6
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → 𝑌 ∈ (𝑌(ball‘𝑀)𝑅)) |
21 | 13, 14, 19, 20 | syl3anc 1372 |
. . . . 5
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌 ∈ (𝑌(ball‘𝑀)𝑅)) |
22 | 14, 21 | elind 4094 |
. . . . . . 7
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌 ∈ (𝑋 ∩ (𝑌(ball‘𝑀)𝑅))) |
23 | 15 | rexrd 10781 |
. . . . . . 7
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈
ℝ*) |
24 | | eqid 2739 |
. . . . . . . 8
⊢ (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) = (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) |
25 | 24 | blres 23196 |
. . . . . . 7
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ (𝑋 ∩ (𝑌(ball‘𝑀)𝑅)) ∧ 𝑅 ∈ ℝ*) → (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅))) |
26 | 13, 22, 23, 25 | syl3anc 1372 |
. . . . . 6
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅))) |
27 | | inidm 4119 |
. . . . . 6
⊢ ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅)) = (𝑌(ball‘𝑀)𝑅) |
28 | 26, 27 | eqtr2di 2791 |
. . . . 5
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑌(ball‘𝑀)𝑅) = (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅)) |
29 | | rspceov 7229 |
. . . . 5
⊢ ((𝑌 ∈ (𝑌(ball‘𝑀)𝑅) ∧ 𝑅 ∈ ℝ+ ∧ (𝑌(ball‘𝑀)𝑅) = (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅)) → ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟)) |
30 | 21, 19, 28, 29 | syl3anc 1372 |
. . . 4
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟)) |
31 | | isbnd2 35596 |
. . . 4
⊢ (((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) ↔ ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)) ∧ ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))) |
32 | 12, 30, 31 | sylanbrc 586 |
. . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅)) |
33 | 32 | simpld 498 |
. 2
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅))) |
34 | 11, 33 | pm2.61dane 3022 |
1
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅))) |