Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blbnd Structured version   Visualization version   GIF version

Theorem blbnd 37826
Description: A ball is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
blbnd ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))

Proof of Theorem blbnd
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → 𝑀 ∈ (∞Met‘𝑋))
2 rexr 11155 . . . . . 6 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
3 blssm 24331 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ*) → (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋)
42, 3syl3an3 1165 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋)
5 xmetres2 24274 . . . . 5 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑌(ball‘𝑀)𝑅) ⊆ 𝑋) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
61, 4, 5syl2anc 584 . . . 4 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
76adantr 480 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
8 rzal 4459 . . . 4 ((𝑌(ball‘𝑀)𝑅) = ∅ → ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
98adantl 481 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
10 isbndx 37821 . . 3 ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ↔ ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)) ∧ ∀𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟)))
117, 9, 10sylanbrc 583 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) = ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))
126adantr 480 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)))
131adantr 480 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑀 ∈ (∞Met‘𝑋))
14 simpl2 1193 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌𝑋)
15 simpl3 1194 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈ ℝ)
16 xbln0 24327 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ*) → ((𝑌(ball‘𝑀)𝑅) ≠ ∅ ↔ 0 < 𝑅))
172, 16syl3an3 1165 . . . . . . . 8 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → ((𝑌(ball‘𝑀)𝑅) ≠ ∅ ↔ 0 < 𝑅))
1817biimpa 476 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 0 < 𝑅)
1915, 18elrpd 12928 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈ ℝ+)
20 blcntr 24326 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ+) → 𝑌 ∈ (𝑌(ball‘𝑀)𝑅))
2113, 14, 19, 20syl3anc 1373 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌 ∈ (𝑌(ball‘𝑀)𝑅))
2214, 21elind 4150 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑌 ∈ (𝑋 ∩ (𝑌(ball‘𝑀)𝑅)))
2315rexrd 11159 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → 𝑅 ∈ ℝ*)
24 eqid 2731 . . . . . . . 8 (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) = (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅)))
2524blres 24344 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ (𝑋 ∩ (𝑌(ball‘𝑀)𝑅)) ∧ 𝑅 ∈ ℝ*) → (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅)))
2613, 22, 23, 25syl3anc 1373 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅) = ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅)))
27 inidm 4177 . . . . . 6 ((𝑌(ball‘𝑀)𝑅) ∩ (𝑌(ball‘𝑀)𝑅)) = (𝑌(ball‘𝑀)𝑅)
2826, 27eqtr2di 2783 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑌(ball‘𝑀)𝑅) = (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅))
29 rspceov 7395 . . . . 5 ((𝑌 ∈ (𝑌(ball‘𝑀)𝑅) ∧ 𝑅 ∈ ℝ+ ∧ (𝑌(ball‘𝑀)𝑅) = (𝑌(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑅)) → ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
3021, 19, 28, 29syl3anc 1373 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟))
31 isbnd2 37822 . . . 4 (((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) ↔ ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (∞Met‘(𝑌(ball‘𝑀)𝑅)) ∧ ∃𝑥 ∈ (𝑌(ball‘𝑀)𝑅)∃𝑟 ∈ ℝ+ (𝑌(ball‘𝑀)𝑅) = (𝑥(ball‘(𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))))𝑟)))
3212, 30, 31sylanbrc 583 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → ((𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅))
3332simpld 494 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) ∧ (𝑌(ball‘𝑀)𝑅) ≠ ∅) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))
3411, 33pm2.61dane 3015 1 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cin 3901  wss 3902  c0 4283   class class class wbr 5091   × cxp 5614  cres 5618  cfv 6481  (class class class)co 7346  cr 11002  0cc0 11003  *cxr 11142   < clt 11143  +crp 12887  ∞Metcxmet 21274  ballcbl 21276  Bndcbnd 37806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-ec 8624  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-bnd 37818
This theorem is referenced by:  ssbnd  37827  prdsbnd2  37834
  Copyright terms: Public domain W3C validator