MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zaddcl Structured version   Visualization version   GIF version

Theorem zaddcl 12009
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
zaddcl ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)

Proof of Theorem zaddcl
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elz2 11986 . 2 (𝑀 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦))
2 elz2 11986 . 2 (𝑁 ∈ ℤ ↔ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤))
3 reeanv 3367 . . 3 (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) ↔ (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)))
4 reeanv 3367 . . . . 5 (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) ↔ (∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)))
5 nnaddcl 11647 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 + 𝑧) ∈ ℕ)
65adantr 483 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑥 + 𝑧) ∈ ℕ)
7 nnaddcl 11647 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 + 𝑤) ∈ ℕ)
87adantl 484 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑦 + 𝑤) ∈ ℕ)
9 nncn 11632 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
10 nncn 11632 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
119, 10anim12i 614 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ))
12 nncn 11632 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
13 nncn 11632 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → 𝑤 ∈ ℂ)
1412, 13anim12i 614 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ))
15 addsub4 10915 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥𝑦) + (𝑧𝑤)))
1611, 14, 15syl2an 597 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥𝑦) + (𝑧𝑤)))
1716eqcomd 2827 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥𝑦) + (𝑧𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤)))
18 rspceov 7189 . . . . . . . . 9 (((𝑥 + 𝑧) ∈ ℕ ∧ (𝑦 + 𝑤) ∈ ℕ ∧ ((𝑥𝑦) + (𝑧𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤))) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥𝑦) + (𝑧𝑤)) = (𝑢𝑣))
196, 8, 17, 18syl3anc 1367 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥𝑦) + (𝑧𝑤)) = (𝑢𝑣))
20 elz2 11986 . . . . . . . 8 (((𝑥𝑦) + (𝑧𝑤)) ∈ ℤ ↔ ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥𝑦) + (𝑧𝑤)) = (𝑢𝑣))
2119, 20sylibr 236 . . . . . . 7 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥𝑦) + (𝑧𝑤)) ∈ ℤ)
22 oveq12 7151 . . . . . . . 8 ((𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) = ((𝑥𝑦) + (𝑧𝑤)))
2322eleq1d 2897 . . . . . . 7 ((𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑥𝑦) + (𝑧𝑤)) ∈ ℤ))
2421, 23syl5ibrcom 249 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ))
2524rexlimdvva 3294 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ))
264, 25syl5bir 245 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ))
2726rexlimivv 3292 . . 3 (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ)
283, 27sylbir 237 . 2 ((∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ)
291, 2, 28syl2anb 599 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3139  (class class class)co 7142  cc 10521   + caddc 10526  cmin 10856  cn 11624  cz 11968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-n0 11885  df-z 11969
This theorem is referenced by:  peano2z  12010  zsubcl  12011  zrevaddcl  12014  zdivadd  12040  zaddcld  12078  eluzaddi  12258  eluzsubi  12259  nn0pzuz  12292  fzen  12914  fzaddel  12931  fzadd2  12932  fzrev3  12963  fzrevral3  12984  elfzmlbp  13008  fzoun  13064  fzoaddel  13080  zpnn0elfzo  13100  elfzomelpfzo  13131  fzoshftral  13144  modsumfzodifsn  13302  ccatsymb  13921  ccatval21sw  13924  lswccatn0lsw  13930  swrdccatin2  14076  revccat  14113  2cshw  14160  cshweqrep  14168  2cshwcshw  14172  cshwcsh2id  14175  cshco  14183  climshftlem  14916  isershft  15005  iseraltlem2  15024  fsumzcl  15077  zrisefaccl  15359  summodnegmod  15625  dvds2ln  15627  dvds2add  15628  dvdsadd  15637  dvdsadd2b  15641  addmodlteqALT  15660  3dvdsdec  15666  3dvds2dec  15667  opoe  15697  opeo  15699  divalglem2  15729  ndvdsadd  15744  gcdaddmlem  15855  pythagtriplem9  16144  difsqpwdvds  16206  gzaddcl  16256  mod2xnegi  16390  cshwshashlem2  16413  cycsubgcl  18332  efgredleme  18852  zaddablx  18975  pgpfac1lem2  19180  zsubrg  20581  zringmulg  20608  expghm  20626  mulgghm2  20627  cygznlem3  20699  iaa  24900  dchrisumlem1  26051  axlowdimlem16  26729  crctcshwlkn0lem4  27577  crctcshwlkn0  27585  clwwlkccatlem  27752  clwwisshclwwslemlem  27776  ballotlemsima  31780  mzpclall  39416  mzpindd  39435  rmxyadd  39610  jm2.18  39677  inductionexd  40595  dvdsn1add  42314  stoweidlem34  42409  fourierswlem  42605  2elfz2melfz  43608  opoeALTV  43933  opeoALTV  43934  even3prm2  43969  mogoldbblem  43970  gbowgt5  44012  gboge9  44014  sbgoldbst  44028  2zrngamgm  44295
  Copyright terms: Public domain W3C validator