![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zaddcl | Structured version Visualization version GIF version |
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
zaddcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz2 12609 | . 2 ⊢ (𝑀 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦)) | |
2 | elz2 12609 | . 2 ⊢ (𝑁 ∈ ℤ ↔ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) | |
3 | reeanv 3216 | . . 3 ⊢ (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) ↔ (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤))) | |
4 | reeanv 3216 | . . . . 5 ⊢ (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) ↔ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤))) | |
5 | nnaddcl 12268 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 + 𝑧) ∈ ℕ) | |
6 | 5 | adantr 479 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑥 + 𝑧) ∈ ℕ) |
7 | nnaddcl 12268 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 + 𝑤) ∈ ℕ) | |
8 | 7 | adantl 480 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑦 + 𝑤) ∈ ℕ) |
9 | nncn 12253 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
10 | nncn 12253 | . . . . . . . . . . . 12 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
11 | 9, 10 | anim12i 611 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ)) |
12 | nncn 12253 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
13 | nncn 12253 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℕ → 𝑤 ∈ ℂ) | |
14 | 12, 13 | anim12i 611 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ)) |
15 | addsub4 11535 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) | |
16 | 11, 14, 15 | syl2an 594 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) |
17 | 16 | eqcomd 2731 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤))) |
18 | rspceov 7467 | . . . . . . . . 9 ⊢ (((𝑥 + 𝑧) ∈ ℕ ∧ (𝑦 + 𝑤) ∈ ℕ ∧ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤))) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) | |
19 | 6, 8, 17, 18 | syl3anc 1368 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) |
20 | elz2 12609 | . . . . . . . 8 ⊢ (((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ ↔ ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) | |
21 | 19, 20 | sylibr 233 | . . . . . . 7 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ) |
22 | oveq12 7428 | . . . . . . . 8 ⊢ ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) | |
23 | 22 | eleq1d 2810 | . . . . . . 7 ⊢ ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ)) |
24 | 21, 23 | syl5ibrcom 246 | . . . . . 6 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
25 | 24 | rexlimdvva 3201 | . . . . 5 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
26 | 4, 25 | biimtrrid 242 | . . . 4 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
27 | 26 | rexlimivv 3189 | . . 3 ⊢ (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ) |
28 | 3, 27 | sylbir 234 | . 2 ⊢ ((∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ) |
29 | 1, 2, 28 | syl2anb 596 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 (class class class)co 7419 ℂcc 11138 + caddc 11143 − cmin 11476 ℕcn 12245 ℤcz 12591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 |
This theorem is referenced by: peano2z 12636 zsubcl 12637 zrevaddcl 12640 zdivadd 12666 zaddcld 12703 eluzadd 12884 eluzaddiOLD 12887 eluzsubiOLD 12889 nn0pzuz 12922 fzen 13553 fzaddel 13570 fzadd2 13571 fzrev3 13602 fzrevral3 13623 elfzmlbp 13647 fzoun 13704 fzoaddel 13720 zpnn0elfzo 13740 elfzomelpfzo 13772 fzoshftral 13785 modsumfzodifsn 13945 ccatsymb 14568 ccatval21sw 14571 lswccatn0lsw 14577 swrdccatin2 14715 revccat 14752 2cshw 14799 cshweqrep 14807 2cshwcshw 14812 cshwcsh2id 14815 cshco 14823 climshftlem 15554 isershft 15646 iseraltlem2 15665 fsumzcl 15717 zrisefaccl 16000 summodnegmod 16267 dvds2ln 16269 dvds2add 16270 dvdsadd 16282 dvdsadd2b 16286 addmodlteqALT 16305 3dvdsdec 16312 3dvds2dec 16313 opoe 16343 opeo 16345 divalglem2 16375 ndvdsadd 16390 gcdaddmlem 16502 pythagtriplem9 16796 difsqpwdvds 16859 gzaddcl 16909 mod2xnegi 17043 cshwshashlem2 17069 cycsubgcl 19169 efgredleme 19710 zaddablx 19839 pgpfac1lem2 20044 zsubrg 21370 zringsub 21398 zringmulg 21399 expghm 21418 mulgghm2 21419 pzriprnglem4 21427 cygznlem3 21520 iaa 26305 dchrisumlem1 27467 axlowdimlem16 28840 crctcshwlkn0lem4 29696 crctcshwlkn0 29704 clwwlkccatlem 29871 clwwisshclwwslemlem 29895 ballotlemsima 34266 mzpclall 42289 mzpindd 42308 rmxyadd 42484 jm2.18 42551 inductionexd 43727 dvdsn1add 45465 stoweidlem34 45560 fourierswlem 45756 2elfz2melfz 46836 opoeALTV 47160 opeoALTV 47161 even3prm2 47196 mogoldbblem 47197 gbowgt5 47239 gboge9 47241 sbgoldbst 47255 2zrngamgm 47493 |
Copyright terms: Public domain | W3C validator |