| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zaddcl | Structured version Visualization version GIF version | ||
| Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| zaddcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz2 12489 | . 2 ⊢ (𝑀 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦)) | |
| 2 | elz2 12489 | . 2 ⊢ (𝑁 ∈ ℤ ↔ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) | |
| 3 | reeanv 3201 | . . 3 ⊢ (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) ↔ (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤))) | |
| 4 | reeanv 3201 | . . . . 5 ⊢ (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) ↔ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤))) | |
| 5 | nnaddcl 12151 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 + 𝑧) ∈ ℕ) | |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑥 + 𝑧) ∈ ℕ) |
| 7 | nnaddcl 12151 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 + 𝑤) ∈ ℕ) | |
| 8 | 7 | adantl 481 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑦 + 𝑤) ∈ ℕ) |
| 9 | nncn 12136 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
| 10 | nncn 12136 | . . . . . . . . . . . 12 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
| 11 | 9, 10 | anim12i 613 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ)) |
| 12 | nncn 12136 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 13 | nncn 12136 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℕ → 𝑤 ∈ ℂ) | |
| 14 | 12, 13 | anim12i 613 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ)) |
| 15 | addsub4 11407 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) | |
| 16 | 11, 14, 15 | syl2an 596 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) |
| 17 | 16 | eqcomd 2735 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤))) |
| 18 | rspceov 7398 | . . . . . . . . 9 ⊢ (((𝑥 + 𝑧) ∈ ℕ ∧ (𝑦 + 𝑤) ∈ ℕ ∧ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤))) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) | |
| 19 | 6, 8, 17, 18 | syl3anc 1373 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) |
| 20 | elz2 12489 | . . . . . . . 8 ⊢ (((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ ↔ ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) | |
| 21 | 19, 20 | sylibr 234 | . . . . . . 7 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ) |
| 22 | oveq12 7358 | . . . . . . . 8 ⊢ ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) | |
| 23 | 22 | eleq1d 2813 | . . . . . . 7 ⊢ ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ)) |
| 24 | 21, 23 | syl5ibrcom 247 | . . . . . 6 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
| 25 | 24 | rexlimdvva 3186 | . . . . 5 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
| 26 | 4, 25 | biimtrrid 243 | . . . 4 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
| 27 | 26 | rexlimivv 3171 | . . 3 ⊢ (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ) |
| 28 | 3, 27 | sylbir 235 | . 2 ⊢ ((∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ) |
| 29 | 1, 2, 28 | syl2anb 598 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 (class class class)co 7349 ℂcc 11007 + caddc 11012 − cmin 11347 ℕcn 12128 ℤcz 12471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 |
| This theorem is referenced by: peano2z 12516 zsubcl 12517 zrevaddcl 12520 zdivadd 12547 zaddcld 12584 eluzadd 12764 eluzaddiOLD 12767 eluzsubiOLD 12769 nn0pzuz 12806 fzen 13444 fzaddel 13461 fzadd2 13462 fzrev3 13493 fzrevral3 13517 elfzmlbp 13542 fzoun 13599 fzoaddel 13620 zpnn0elfzo 13641 elfzomelpfzo 13674 fzoshftral 13687 modsumfzodifsn 13851 ccatsymb 14489 ccatval21sw 14492 lswccatn0lsw 14498 swrdccatin2 14635 revccat 14672 2cshw 14719 cshweqrep 14727 2cshwcshw 14732 cshwcsh2id 14735 cshco 14743 climshftlem 15481 isershft 15571 iseraltlem2 15590 fsumzcl 15642 zrisefaccl 15927 summodnegmod 16197 dvds2ln 16200 dvds2add 16201 dvdsadd 16213 dvdsadd2b 16217 addmodlteqALT 16236 3dvdsdec 16243 3dvds2dec 16244 opoe 16274 opeo 16276 divalglem2 16306 ndvdsadd 16321 gcdaddmlem 16435 pythagtriplem9 16736 difsqpwdvds 16799 gzaddcl 16849 mod2xnegi 16983 cshwshashlem2 17008 cycsubgcl 19085 efgredleme 19622 zaddablx 19751 pgpfac1lem2 19956 zsubrg 21327 zringsub 21362 zringmulg 21363 expghm 21382 mulgghm2 21383 pzriprnglem4 21391 cygznlem3 21476 iaa 26231 dchrisumlem1 27398 axlowdimlem16 28902 crctcshwlkn0lem4 29758 crctcshwlkn0 29766 clwwlkccatlem 29933 clwwisshclwwslemlem 29957 elrgspnlem1 33182 ballotlemsima 34484 mzpclall 42704 mzpindd 42723 rmxyadd 42898 jm2.18 42965 inductionexd 44132 dvdsn1add 45924 stoweidlem34 46019 fourierswlem 46215 2elfz2melfz 47306 submodaddmod 47329 submodneaddmod 47339 modmkpkne 47349 opoeALTV 47671 opeoALTV 47672 even3prm2 47707 mogoldbblem 47708 gbowgt5 47750 gboge9 47752 sbgoldbst 47766 2zrngamgm 48233 |
| Copyright terms: Public domain | W3C validator |