Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zaddcl | Structured version Visualization version GIF version |
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
zaddcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz2 12267 | . 2 ⊢ (𝑀 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦)) | |
2 | elz2 12267 | . 2 ⊢ (𝑁 ∈ ℤ ↔ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) | |
3 | reeanv 3292 | . . 3 ⊢ (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) ↔ (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤))) | |
4 | reeanv 3292 | . . . . 5 ⊢ (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) ↔ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤))) | |
5 | nnaddcl 11926 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 + 𝑧) ∈ ℕ) | |
6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑥 + 𝑧) ∈ ℕ) |
7 | nnaddcl 11926 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 + 𝑤) ∈ ℕ) | |
8 | 7 | adantl 481 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑦 + 𝑤) ∈ ℕ) |
9 | nncn 11911 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
10 | nncn 11911 | . . . . . . . . . . . 12 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
11 | 9, 10 | anim12i 612 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ)) |
12 | nncn 11911 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
13 | nncn 11911 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℕ → 𝑤 ∈ ℂ) | |
14 | 12, 13 | anim12i 612 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ)) |
15 | addsub4 11194 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) | |
16 | 11, 14, 15 | syl2an 595 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) |
17 | 16 | eqcomd 2744 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤))) |
18 | rspceov 7302 | . . . . . . . . 9 ⊢ (((𝑥 + 𝑧) ∈ ℕ ∧ (𝑦 + 𝑤) ∈ ℕ ∧ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤))) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) | |
19 | 6, 8, 17, 18 | syl3anc 1369 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) |
20 | elz2 12267 | . . . . . . . 8 ⊢ (((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ ↔ ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) | |
21 | 19, 20 | sylibr 233 | . . . . . . 7 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ) |
22 | oveq12 7264 | . . . . . . . 8 ⊢ ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) | |
23 | 22 | eleq1d 2823 | . . . . . . 7 ⊢ ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ)) |
24 | 21, 23 | syl5ibrcom 246 | . . . . . 6 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
25 | 24 | rexlimdvva 3222 | . . . . 5 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
26 | 4, 25 | syl5bir 242 | . . . 4 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
27 | 26 | rexlimivv 3220 | . . 3 ⊢ (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ) |
28 | 3, 27 | sylbir 234 | . 2 ⊢ ((∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ) |
29 | 1, 2, 28 | syl2anb 597 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 (class class class)co 7255 ℂcc 10800 + caddc 10805 − cmin 11135 ℕcn 11903 ℤcz 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 |
This theorem is referenced by: peano2z 12291 zsubcl 12292 zrevaddcl 12295 zdivadd 12321 zaddcld 12359 eluzaddi 12540 eluzsubi 12541 nn0pzuz 12574 fzen 13202 fzaddel 13219 fzadd2 13220 fzrev3 13251 fzrevral3 13272 elfzmlbp 13296 fzoun 13352 fzoaddel 13368 zpnn0elfzo 13388 elfzomelpfzo 13419 fzoshftral 13432 modsumfzodifsn 13592 ccatsymb 14215 ccatval21sw 14218 lswccatn0lsw 14224 swrdccatin2 14370 revccat 14407 2cshw 14454 cshweqrep 14462 2cshwcshw 14466 cshwcsh2id 14469 cshco 14477 climshftlem 15211 isershft 15303 iseraltlem2 15322 fsumzcl 15375 zrisefaccl 15658 summodnegmod 15924 dvds2ln 15926 dvds2add 15927 dvdsadd 15939 dvdsadd2b 15943 addmodlteqALT 15962 3dvdsdec 15969 3dvds2dec 15970 opoe 16000 opeo 16002 divalglem2 16032 ndvdsadd 16047 gcdaddmlem 16159 pythagtriplem9 16453 difsqpwdvds 16516 gzaddcl 16566 mod2xnegi 16700 cshwshashlem2 16726 cycsubgcl 18740 efgredleme 19264 zaddablx 19388 pgpfac1lem2 19593 zsubrg 20563 zringmulg 20590 expghm 20609 mulgghm2 20610 cygznlem3 20689 iaa 25390 dchrisumlem1 26542 axlowdimlem16 27228 crctcshwlkn0lem4 28079 crctcshwlkn0 28087 clwwlkccatlem 28254 clwwisshclwwslemlem 28278 ballotlemsima 32382 mzpclall 40465 mzpindd 40484 rmxyadd 40659 jm2.18 40726 inductionexd 41654 dvdsn1add 43370 stoweidlem34 43465 fourierswlem 43661 2elfz2melfz 44698 opoeALTV 45023 opeoALTV 45024 even3prm2 45059 mogoldbblem 45060 gbowgt5 45102 gboge9 45104 sbgoldbst 45118 2zrngamgm 45385 |
Copyright terms: Public domain | W3C validator |