MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zaddcl Structured version   Visualization version   GIF version

Theorem zaddcl 12512
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
zaddcl ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)

Proof of Theorem zaddcl
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elz2 12486 . 2 (𝑀 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦))
2 elz2 12486 . 2 (𝑁 ∈ ℤ ↔ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤))
3 reeanv 3204 . . 3 (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) ↔ (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)))
4 reeanv 3204 . . . . 5 (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) ↔ (∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)))
5 nnaddcl 12148 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 + 𝑧) ∈ ℕ)
65adantr 480 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑥 + 𝑧) ∈ ℕ)
7 nnaddcl 12148 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 + 𝑤) ∈ ℕ)
87adantl 481 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑦 + 𝑤) ∈ ℕ)
9 nncn 12133 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
10 nncn 12133 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
119, 10anim12i 613 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ))
12 nncn 12133 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
13 nncn 12133 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → 𝑤 ∈ ℂ)
1412, 13anim12i 613 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ))
15 addsub4 11404 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥𝑦) + (𝑧𝑤)))
1611, 14, 15syl2an 596 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥𝑦) + (𝑧𝑤)))
1716eqcomd 2737 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥𝑦) + (𝑧𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤)))
18 rspceov 7395 . . . . . . . . 9 (((𝑥 + 𝑧) ∈ ℕ ∧ (𝑦 + 𝑤) ∈ ℕ ∧ ((𝑥𝑦) + (𝑧𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤))) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥𝑦) + (𝑧𝑤)) = (𝑢𝑣))
196, 8, 17, 18syl3anc 1373 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥𝑦) + (𝑧𝑤)) = (𝑢𝑣))
20 elz2 12486 . . . . . . . 8 (((𝑥𝑦) + (𝑧𝑤)) ∈ ℤ ↔ ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥𝑦) + (𝑧𝑤)) = (𝑢𝑣))
2119, 20sylibr 234 . . . . . . 7 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥𝑦) + (𝑧𝑤)) ∈ ℤ)
22 oveq12 7355 . . . . . . . 8 ((𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) = ((𝑥𝑦) + (𝑧𝑤)))
2322eleq1d 2816 . . . . . . 7 ((𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑥𝑦) + (𝑧𝑤)) ∈ ℤ))
2421, 23syl5ibrcom 247 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ))
2524rexlimdvva 3189 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ))
264, 25biimtrrid 243 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ))
2726rexlimivv 3174 . . 3 (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ)
283, 27sylbir 235 . 2 ((∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ)
291, 2, 28syl2anb 598 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  (class class class)co 7346  cc 11004   + caddc 11009  cmin 11344  cn 12125  cz 12468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469
This theorem is referenced by:  peano2z  12513  zsubcl  12514  zrevaddcl  12517  zdivadd  12544  zaddcld  12581  eluzadd  12761  eluzaddiOLD  12764  eluzsubiOLD  12766  nn0pzuz  12803  fzen  13441  fzaddel  13458  fzadd2  13459  fzrev3  13490  fzrevral3  13514  elfzmlbp  13539  fzoun  13596  fzoaddel  13617  zpnn0elfzo  13638  elfzomelpfzo  13672  fzoshftral  13687  modsumfzodifsn  13851  ccatsymb  14490  ccatval21sw  14493  lswccatn0lsw  14499  swrdccatin2  14636  revccat  14673  2cshw  14720  cshweqrep  14728  2cshwcshw  14732  cshwcsh2id  14735  cshco  14743  climshftlem  15481  isershft  15571  iseraltlem2  15590  fsumzcl  15642  zrisefaccl  15927  summodnegmod  16197  dvds2ln  16200  dvds2add  16201  dvdsadd  16213  dvdsadd2b  16217  addmodlteqALT  16236  3dvdsdec  16243  3dvds2dec  16244  opoe  16274  opeo  16276  divalglem2  16306  ndvdsadd  16321  gcdaddmlem  16435  pythagtriplem9  16736  difsqpwdvds  16799  gzaddcl  16849  mod2xnegi  16983  cshwshashlem2  17008  cycsubgcl  19118  efgredleme  19655  zaddablx  19784  pgpfac1lem2  19989  zsubrg  21357  zringsub  21392  zringmulg  21393  expghm  21412  mulgghm2  21413  pzriprnglem4  21421  cygznlem3  21506  iaa  26260  dchrisumlem1  27427  axlowdimlem16  28935  crctcshwlkn0lem4  29791  crctcshwlkn0  29799  clwwlkccatlem  29969  clwwisshclwwslemlem  29993  elrgspnlem1  33209  ballotlemsima  34529  mzpclall  42830  mzpindd  42849  rmxyadd  43024  jm2.18  43091  inductionexd  44258  dvdsn1add  46047  stoweidlem34  46142  fourierswlem  46338  nthrucw  46994  2elfz2melfz  47428  submodaddmod  47451  submodneaddmod  47461  modmkpkne  47471  opoeALTV  47793  opeoALTV  47794  even3prm2  47829  mogoldbblem  47830  gbowgt5  47872  gboge9  47874  sbgoldbst  47888  2zrngamgm  48355
  Copyright terms: Public domain W3C validator