MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zaddcl Structured version   Visualization version   GIF version

Theorem zaddcl 12573
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
zaddcl ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)

Proof of Theorem zaddcl
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elz2 12547 . 2 (𝑀 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦))
2 elz2 12547 . 2 (𝑁 ∈ ℤ ↔ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤))
3 reeanv 3209 . . 3 (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) ↔ (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)))
4 reeanv 3209 . . . . 5 (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) ↔ (∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)))
5 nnaddcl 12209 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 + 𝑧) ∈ ℕ)
65adantr 480 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑥 + 𝑧) ∈ ℕ)
7 nnaddcl 12209 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 + 𝑤) ∈ ℕ)
87adantl 481 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑦 + 𝑤) ∈ ℕ)
9 nncn 12194 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
10 nncn 12194 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
119, 10anim12i 613 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ))
12 nncn 12194 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
13 nncn 12194 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → 𝑤 ∈ ℂ)
1412, 13anim12i 613 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ))
15 addsub4 11465 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥𝑦) + (𝑧𝑤)))
1611, 14, 15syl2an 596 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥𝑦) + (𝑧𝑤)))
1716eqcomd 2735 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥𝑦) + (𝑧𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤)))
18 rspceov 7436 . . . . . . . . 9 (((𝑥 + 𝑧) ∈ ℕ ∧ (𝑦 + 𝑤) ∈ ℕ ∧ ((𝑥𝑦) + (𝑧𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤))) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥𝑦) + (𝑧𝑤)) = (𝑢𝑣))
196, 8, 17, 18syl3anc 1373 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥𝑦) + (𝑧𝑤)) = (𝑢𝑣))
20 elz2 12547 . . . . . . . 8 (((𝑥𝑦) + (𝑧𝑤)) ∈ ℤ ↔ ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥𝑦) + (𝑧𝑤)) = (𝑢𝑣))
2119, 20sylibr 234 . . . . . . 7 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥𝑦) + (𝑧𝑤)) ∈ ℤ)
22 oveq12 7396 . . . . . . . 8 ((𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) = ((𝑥𝑦) + (𝑧𝑤)))
2322eleq1d 2813 . . . . . . 7 ((𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑥𝑦) + (𝑧𝑤)) ∈ ℤ))
2421, 23syl5ibrcom 247 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ))
2524rexlimdvva 3194 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥𝑦) ∧ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ))
264, 25biimtrrid 243 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ))
2726rexlimivv 3179 . . 3 (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ)
283, 27sylbir 235 . 2 ((∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧𝑤)) → (𝑀 + 𝑁) ∈ ℤ)
291, 2, 28syl2anb 598 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7387  cc 11066   + caddc 11071  cmin 11405  cn 12186  cz 12529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530
This theorem is referenced by:  peano2z  12574  zsubcl  12575  zrevaddcl  12578  zdivadd  12605  zaddcld  12642  eluzadd  12822  eluzaddiOLD  12825  eluzsubiOLD  12827  nn0pzuz  12864  fzen  13502  fzaddel  13519  fzadd2  13520  fzrev3  13551  fzrevral3  13575  elfzmlbp  13600  fzoun  13657  fzoaddel  13678  zpnn0elfzo  13699  elfzomelpfzo  13732  fzoshftral  13745  modsumfzodifsn  13909  ccatsymb  14547  ccatval21sw  14550  lswccatn0lsw  14556  swrdccatin2  14694  revccat  14731  2cshw  14778  cshweqrep  14786  2cshwcshw  14791  cshwcsh2id  14794  cshco  14802  climshftlem  15540  isershft  15630  iseraltlem2  15649  fsumzcl  15701  zrisefaccl  15986  summodnegmod  16256  dvds2ln  16259  dvds2add  16260  dvdsadd  16272  dvdsadd2b  16276  addmodlteqALT  16295  3dvdsdec  16302  3dvds2dec  16303  opoe  16333  opeo  16335  divalglem2  16365  ndvdsadd  16380  gcdaddmlem  16494  pythagtriplem9  16795  difsqpwdvds  16858  gzaddcl  16908  mod2xnegi  17042  cshwshashlem2  17067  cycsubgcl  19138  efgredleme  19673  zaddablx  19802  pgpfac1lem2  20007  zsubrg  21337  zringsub  21365  zringmulg  21366  expghm  21385  mulgghm2  21386  pzriprnglem4  21394  cygznlem3  21479  iaa  26233  dchrisumlem1  27400  axlowdimlem16  28884  crctcshwlkn0lem4  29743  crctcshwlkn0  29751  clwwlkccatlem  29918  clwwisshclwwslemlem  29942  elrgspnlem1  33193  ballotlemsima  34507  mzpclall  42715  mzpindd  42734  rmxyadd  42910  jm2.18  42977  inductionexd  44144  dvdsn1add  45937  stoweidlem34  46032  fourierswlem  46228  2elfz2melfz  47316  submodaddmod  47339  submodneaddmod  47349  modmkpkne  47359  opoeALTV  47681  opeoALTV  47682  even3prm2  47717  mogoldbblem  47718  gbowgt5  47760  gboge9  47762  sbgoldbst  47776  2zrngamgm  48230
  Copyright terms: Public domain W3C validator