![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zaddcl | Structured version Visualization version GIF version |
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
zaddcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz2 12517 | . 2 ⊢ (𝑀 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦)) | |
2 | elz2 12517 | . 2 ⊢ (𝑁 ∈ ℤ ↔ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) | |
3 | reeanv 3217 | . . 3 ⊢ (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) ↔ (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤))) | |
4 | reeanv 3217 | . . . . 5 ⊢ (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) ↔ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤))) | |
5 | nnaddcl 12176 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 + 𝑧) ∈ ℕ) | |
6 | 5 | adantr 481 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑥 + 𝑧) ∈ ℕ) |
7 | nnaddcl 12176 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 + 𝑤) ∈ ℕ) | |
8 | 7 | adantl 482 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑦 + 𝑤) ∈ ℕ) |
9 | nncn 12161 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
10 | nncn 12161 | . . . . . . . . . . . 12 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
11 | 9, 10 | anim12i 613 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ)) |
12 | nncn 12161 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
13 | nncn 12161 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℕ → 𝑤 ∈ ℂ) | |
14 | 12, 13 | anim12i 613 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ)) |
15 | addsub4 11444 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) | |
16 | 11, 14, 15 | syl2an 596 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) |
17 | 16 | eqcomd 2742 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤))) |
18 | rspceov 7404 | . . . . . . . . 9 ⊢ (((𝑥 + 𝑧) ∈ ℕ ∧ (𝑦 + 𝑤) ∈ ℕ ∧ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤))) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) | |
19 | 6, 8, 17, 18 | syl3anc 1371 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) |
20 | elz2 12517 | . . . . . . . 8 ⊢ (((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ ↔ ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) | |
21 | 19, 20 | sylibr 233 | . . . . . . 7 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ) |
22 | oveq12 7366 | . . . . . . . 8 ⊢ ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) | |
23 | 22 | eleq1d 2822 | . . . . . . 7 ⊢ ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ)) |
24 | 21, 23 | syl5ibrcom 246 | . . . . . 6 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
25 | 24 | rexlimdvva 3205 | . . . . 5 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
26 | 4, 25 | biimtrrid 242 | . . . 4 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
27 | 26 | rexlimivv 3196 | . . 3 ⊢ (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ) |
28 | 3, 27 | sylbir 234 | . 2 ⊢ ((∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ) |
29 | 1, 2, 28 | syl2anb 598 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3073 (class class class)co 7357 ℂcc 11049 + caddc 11054 − cmin 11385 ℕcn 12153 ℤcz 12499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-n0 12414 df-z 12500 |
This theorem is referenced by: peano2z 12544 zsubcl 12545 zrevaddcl 12548 zdivadd 12574 zaddcld 12611 eluzadd 12792 eluzaddiOLD 12795 eluzsubiOLD 12797 nn0pzuz 12830 fzen 13458 fzaddel 13475 fzadd2 13476 fzrev3 13507 fzrevral3 13528 elfzmlbp 13552 fzoun 13609 fzoaddel 13625 zpnn0elfzo 13645 elfzomelpfzo 13676 fzoshftral 13689 modsumfzodifsn 13849 ccatsymb 14470 ccatval21sw 14473 lswccatn0lsw 14479 swrdccatin2 14617 revccat 14654 2cshw 14701 cshweqrep 14709 2cshwcshw 14714 cshwcsh2id 14717 cshco 14725 climshftlem 15456 isershft 15548 iseraltlem2 15567 fsumzcl 15620 zrisefaccl 15903 summodnegmod 16169 dvds2ln 16171 dvds2add 16172 dvdsadd 16184 dvdsadd2b 16188 addmodlteqALT 16207 3dvdsdec 16214 3dvds2dec 16215 opoe 16245 opeo 16247 divalglem2 16277 ndvdsadd 16292 gcdaddmlem 16404 pythagtriplem9 16696 difsqpwdvds 16759 gzaddcl 16809 mod2xnegi 16943 cshwshashlem2 16969 cycsubgcl 18999 efgredleme 19525 zaddablx 19650 pgpfac1lem2 19854 zsubrg 20850 zringmulg 20877 expghm 20896 mulgghm2 20897 cygznlem3 20976 iaa 25685 dchrisumlem1 26837 axlowdimlem16 27906 crctcshwlkn0lem4 28758 crctcshwlkn0 28766 clwwlkccatlem 28933 clwwisshclwwslemlem 28957 ballotlemsima 33115 mzpclall 41036 mzpindd 41055 rmxyadd 41231 jm2.18 41298 inductionexd 42417 dvdsn1add 44170 stoweidlem34 44265 fourierswlem 44461 2elfz2melfz 45540 opoeALTV 45865 opeoALTV 45866 even3prm2 45901 mogoldbblem 45902 gbowgt5 45944 gboge9 45946 sbgoldbst 45960 2zrngamgm 46227 |
Copyright terms: Public domain | W3C validator |