| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > genpprecl | Structured version Visualization version GIF version | ||
| Description: Pre-closure law for general operation on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
| genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
| Ref | Expression |
|---|---|
| genpprecl | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐺𝐷) ∈ (𝐴𝐹𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (𝐶𝐺𝐷) = (𝐶𝐺𝐷) | |
| 2 | rspceov 7436 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐶𝐺𝐷) = (𝐶𝐺𝐷)) → ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 (𝐶𝐺𝐷) = (𝑔𝐺ℎ)) | |
| 3 | 1, 2 | mp3an3 1452 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 (𝐶𝐺𝐷) = (𝑔𝐺ℎ)) |
| 4 | genp.1 | . . 3 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
| 5 | genp.2 | . . 3 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
| 6 | 4, 5 | genpelv 10953 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶𝐺𝐷) ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 (𝐶𝐺𝐷) = (𝑔𝐺ℎ))) |
| 7 | 3, 6 | imbitrrid 246 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐺𝐷) ∈ (𝐴𝐹𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 (class class class)co 7387 ∈ cmpo 7389 Qcnq 10805 Pcnp 10812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-ni 10825 df-nq 10865 df-np 10934 |
| This theorem is referenced by: genpn0 10956 genpnmax 10960 addclprlem2 10970 mulclprlem 10972 distrlem1pr 10978 distrlem4pr 10979 ltaddpr 10987 ltexprlem7 10995 |
| Copyright terms: Public domain | W3C validator |