Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > genpprecl | Structured version Visualization version GIF version |
Description: Pre-closure law for general operation on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
Ref | Expression |
---|---|
genpprecl | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐺𝐷) ∈ (𝐴𝐹𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (𝐶𝐺𝐷) = (𝐶𝐺𝐷) | |
2 | rspceov 7302 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐶𝐺𝐷) = (𝐶𝐺𝐷)) → ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 (𝐶𝐺𝐷) = (𝑔𝐺ℎ)) | |
3 | 1, 2 | mp3an3 1448 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 (𝐶𝐺𝐷) = (𝑔𝐺ℎ)) |
4 | genp.1 | . . 3 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
5 | genp.2 | . . 3 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
6 | 4, 5 | genpelv 10687 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶𝐺𝐷) ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 (𝐶𝐺𝐷) = (𝑔𝐺ℎ))) |
7 | 3, 6 | syl5ibr 245 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐺𝐷) ∈ (𝐴𝐹𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 (class class class)co 7255 ∈ cmpo 7257 Qcnq 10539 Pcnp 10546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-ni 10559 df-nq 10599 df-np 10668 |
This theorem is referenced by: genpn0 10690 genpnmax 10694 addclprlem2 10704 mulclprlem 10706 distrlem1pr 10712 distrlem4pr 10713 ltaddpr 10721 ltexprlem7 10729 |
Copyright terms: Public domain | W3C validator |