MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpprecl Structured version   Visualization version   GIF version

Theorem genpprecl 11070
Description: Pre-closure law for general operation on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpprecl ((𝐴P𝐵P) → ((𝐶𝐴𝐷𝐵) → (𝐶𝐺𝐷) ∈ (𝐴𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpprecl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (𝐶𝐺𝐷) = (𝐶𝐺𝐷)
2 rspceov 7497 . . 3 ((𝐶𝐴𝐷𝐵 ∧ (𝐶𝐺𝐷) = (𝐶𝐺𝐷)) → ∃𝑔𝐴𝐵 (𝐶𝐺𝐷) = (𝑔𝐺))
31, 2mp3an3 1450 . 2 ((𝐶𝐴𝐷𝐵) → ∃𝑔𝐴𝐵 (𝐶𝐺𝐷) = (𝑔𝐺))
4 genp.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
5 genp.2 . . 3 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
64, 5genpelv 11069 . 2 ((𝐴P𝐵P) → ((𝐶𝐺𝐷) ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 (𝐶𝐺𝐷) = (𝑔𝐺)))
73, 6imbitrrid 246 1 ((𝐴P𝐵P) → ((𝐶𝐴𝐷𝐵) → (𝐶𝐺𝐷) ∈ (𝐴𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  (class class class)co 7448  cmpo 7450  Qcnq 10921  Pcnp 10928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-ni 10941  df-nq 10981  df-np 11050
This theorem is referenced by:  genpn0  11072  genpnmax  11076  addclprlem2  11086  mulclprlem  11088  distrlem1pr  11094  distrlem4pr  11095  ltaddpr  11103  ltexprlem7  11111
  Copyright terms: Public domain W3C validator