| Step | Hyp | Ref
| Expression |
| 1 | | evthicc.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | | evthicc.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 3 | | evthicc.3 |
. . . 4
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 4 | | evthicc.4 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 5 | 1, 2, 3, 4 | evthicc 25494 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ ∃𝑏 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑏) ≤ (𝐹‘𝑧))) |
| 6 | | reeanv 3229 |
. . 3
⊢
(∃𝑎 ∈
(𝐴[,]𝐵)∃𝑏 ∈ (𝐴[,]𝐵)(∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑏) ≤ (𝐹‘𝑧)) ↔ (∃𝑎 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ ∃𝑏 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑏) ≤ (𝐹‘𝑧))) |
| 7 | 5, 6 | sylibr 234 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ (𝐴[,]𝐵)∃𝑏 ∈ (𝐴[,]𝐵)(∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑏) ≤ (𝐹‘𝑧))) |
| 8 | | r19.26 3111 |
. . . 4
⊢
(∀𝑧 ∈
(𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧)) ↔ (∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑏) ≤ (𝐹‘𝑧))) |
| 9 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 10 | | cncff 24919 |
. . . . . . . . 9
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 12 | | simprr 773 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑏 ∈ (𝐴[,]𝐵)) |
| 13 | 11, 12 | ffvelcdmd 7105 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑏) ∈ ℝ) |
| 14 | 13 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → (𝐹‘𝑏) ∈ ℝ) |
| 15 | | simprl 771 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑎 ∈ (𝐴[,]𝐵)) |
| 16 | 11, 15 | ffvelcdmd 7105 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑎) ∈ ℝ) |
| 17 | 16 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → (𝐹‘𝑎) ∈ ℝ) |
| 18 | 11 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 19 | 18 | ffnd 6737 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → 𝐹 Fn (𝐴[,]𝐵)) |
| 20 | 16 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑎) ∈ ℝ) |
| 21 | | elicc2 13452 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑏) ∈ ℝ ∧ (𝐹‘𝑎) ∈ ℝ) → ((𝐹‘𝑧) ∈ ((𝐹‘𝑏)[,](𝐹‘𝑎)) ↔ ((𝐹‘𝑧) ∈ ℝ ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎)))) |
| 22 | 13, 20, 21 | syl2an2r 685 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝑧) ∈ ((𝐹‘𝑏)[,](𝐹‘𝑎)) ↔ ((𝐹‘𝑧) ∈ ℝ ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎)))) |
| 23 | | 3anass 1095 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑧) ∈ ℝ ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎)) ↔ ((𝐹‘𝑧) ∈ ℝ ∧ ((𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎)))) |
| 24 | 22, 23 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝑧) ∈ ((𝐹‘𝑏)[,](𝐹‘𝑎)) ↔ ((𝐹‘𝑧) ∈ ℝ ∧ ((𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎))))) |
| 25 | | ancom 460 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧)) ↔ ((𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎))) |
| 26 | 11 | ffvelcdmda 7104 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑧) ∈ ℝ) |
| 27 | 26 | biantrurd 532 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (((𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎)) ↔ ((𝐹‘𝑧) ∈ ℝ ∧ ((𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎))))) |
| 28 | 25, 27 | bitrid 283 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧)) ↔ ((𝐹‘𝑧) ∈ ℝ ∧ ((𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎))))) |
| 29 | 24, 28 | bitr4d 282 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝑧) ∈ ((𝐹‘𝑏)[,](𝐹‘𝑎)) ↔ ((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧)))) |
| 30 | 29 | ralbidva 3176 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ∈ ((𝐹‘𝑏)[,](𝐹‘𝑎)) ↔ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧)))) |
| 31 | 30 | biimpar 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ∈ ((𝐹‘𝑏)[,](𝐹‘𝑎))) |
| 32 | | ffnfv 7139 |
. . . . . . . . 9
⊢ (𝐹:(𝐴[,]𝐵)⟶((𝐹‘𝑏)[,](𝐹‘𝑎)) ↔ (𝐹 Fn (𝐴[,]𝐵) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ∈ ((𝐹‘𝑏)[,](𝐹‘𝑎)))) |
| 33 | 19, 31, 32 | sylanbrc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → 𝐹:(𝐴[,]𝐵)⟶((𝐹‘𝑏)[,](𝐹‘𝑎))) |
| 34 | 33 | frnd 6744 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → ran 𝐹 ⊆ ((𝐹‘𝑏)[,](𝐹‘𝑎))) |
| 35 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐴 ∈ ℝ) |
| 36 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐵 ∈ ℝ) |
| 37 | | ssidd 4007 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵)) |
| 38 | | ax-resscn 11212 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
| 39 | | ssid 4006 |
. . . . . . . . . . 11
⊢ ℂ
⊆ ℂ |
| 40 | | cncfss 24925 |
. . . . . . . . . . 11
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)) |
| 41 | 38, 39, 40 | mp2an 692 |
. . . . . . . . . 10
⊢ ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ) |
| 42 | 41, 9 | sselid 3981 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 43 | 11 | ffvelcdmda 7104 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
| 44 | 35, 36, 12, 15, 37, 42, 43 | ivthicc 25493 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((𝐹‘𝑏)[,](𝐹‘𝑎)) ⊆ ran 𝐹) |
| 45 | 44 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → ((𝐹‘𝑏)[,](𝐹‘𝑎)) ⊆ ran 𝐹) |
| 46 | 34, 45 | eqssd 4001 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → ran 𝐹 = ((𝐹‘𝑏)[,](𝐹‘𝑎))) |
| 47 | | rspceov 7480 |
. . . . . 6
⊢ (((𝐹‘𝑏) ∈ ℝ ∧ (𝐹‘𝑎) ∈ ℝ ∧ ran 𝐹 = ((𝐹‘𝑏)[,](𝐹‘𝑎))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦)) |
| 48 | 14, 17, 46, 47 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦)) |
| 49 | 48 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))) |
| 50 | 8, 49 | biimtrrid 243 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑏) ≤ (𝐹‘𝑧)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))) |
| 51 | 50 | rexlimdvva 3213 |
. 2
⊢ (𝜑 → (∃𝑎 ∈ (𝐴[,]𝐵)∃𝑏 ∈ (𝐴[,]𝐵)(∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑏) ≤ (𝐹‘𝑧)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))) |
| 52 | 7, 51 | mpd 15 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦)) |