Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  evthicc2 Structured version   Visualization version   GIF version

Theorem evthicc2 24150
 Description: Combine ivthicc 24148 with evthicc 24149 to exactly describe the image of a closed interval. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
evthicc.1 (𝜑𝐴 ∈ ℝ)
evthicc.2 (𝜑𝐵 ∈ ℝ)
evthicc.3 (𝜑𝐴𝐵)
evthicc.4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
Assertion
Ref Expression
evthicc2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦

Proof of Theorem evthicc2
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evthicc.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 evthicc.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 evthicc.3 . . . 4 (𝜑𝐴𝐵)
4 evthicc.4 . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
51, 2, 3, 4evthicc 24149 . . 3 (𝜑 → (∃𝑎 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑎) ∧ ∃𝑏 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑏) ≤ (𝐹𝑧)))
6 reeanv 3286 . . 3 (∃𝑎 ∈ (𝐴[,]𝐵)∃𝑏 ∈ (𝐴[,]𝐵)(∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑏) ≤ (𝐹𝑧)) ↔ (∃𝑎 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑎) ∧ ∃𝑏 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑏) ≤ (𝐹𝑧)))
75, 6sylibr 237 . 2 (𝜑 → ∃𝑎 ∈ (𝐴[,]𝐵)∃𝑏 ∈ (𝐴[,]𝐵)(∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑏) ≤ (𝐹𝑧)))
8 r19.26 3102 . . . 4 (∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧)) ↔ (∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑏) ≤ (𝐹𝑧)))
94adantr 485 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
10 cncff 23584 . . . . . . . . 9 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
119, 10syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
12 simprr 773 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑏 ∈ (𝐴[,]𝐵))
1311, 12ffvelrnd 6841 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹𝑏) ∈ ℝ)
1413adantr 485 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → (𝐹𝑏) ∈ ℝ)
15 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑎 ∈ (𝐴[,]𝐵))
1611, 15ffvelrnd 6841 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹𝑎) ∈ ℝ)
1716adantr 485 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → (𝐹𝑎) ∈ ℝ)
1811adantr 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
1918ffnd 6497 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → 𝐹 Fn (𝐴[,]𝐵))
2016adantr 485 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑎) ∈ ℝ)
21 elicc2 12834 . . . . . . . . . . . . . 14 (((𝐹𝑏) ∈ ℝ ∧ (𝐹𝑎) ∈ ℝ) → ((𝐹𝑧) ∈ ((𝐹𝑏)[,](𝐹𝑎)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎))))
2213, 20, 21syl2an2r 685 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹𝑧) ∈ ((𝐹𝑏)[,](𝐹𝑎)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎))))
23 3anass 1093 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎)) ↔ ((𝐹𝑧) ∈ ℝ ∧ ((𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎))))
2422, 23bitrdi 290 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹𝑧) ∈ ((𝐹𝑏)[,](𝐹𝑎)) ↔ ((𝐹𝑧) ∈ ℝ ∧ ((𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎)))))
25 ancom 465 . . . . . . . . . . . . 13 (((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧)) ↔ ((𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎)))
2611ffvelrnda 6840 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ ℝ)
2726biantrurd 537 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (((𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎)) ↔ ((𝐹𝑧) ∈ ℝ ∧ ((𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎)))))
2825, 27syl5bb 286 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧)) ↔ ((𝐹𝑧) ∈ ℝ ∧ ((𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎)))))
2924, 28bitr4d 285 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹𝑧) ∈ ((𝐹𝑏)[,](𝐹𝑎)) ↔ ((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))))
3029ralbidva 3126 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ∈ ((𝐹𝑏)[,](𝐹𝑎)) ↔ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))))
3130biimpar 482 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ∈ ((𝐹𝑏)[,](𝐹𝑎)))
32 ffnfv 6871 . . . . . . . . 9 (𝐹:(𝐴[,]𝐵)⟶((𝐹𝑏)[,](𝐹𝑎)) ↔ (𝐹 Fn (𝐴[,]𝐵) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ∈ ((𝐹𝑏)[,](𝐹𝑎))))
3319, 31, 32sylanbrc 587 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → 𝐹:(𝐴[,]𝐵)⟶((𝐹𝑏)[,](𝐹𝑎)))
3433frnd 6503 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → ran 𝐹 ⊆ ((𝐹𝑏)[,](𝐹𝑎)))
351adantr 485 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐴 ∈ ℝ)
362adantr 485 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐵 ∈ ℝ)
37 ssidd 3916 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵))
38 ax-resscn 10622 . . . . . . . . . . 11 ℝ ⊆ ℂ
39 ssid 3915 . . . . . . . . . . 11 ℂ ⊆ ℂ
40 cncfss 23590 . . . . . . . . . . 11 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
4138, 39, 40mp2an 692 . . . . . . . . . 10 ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)
4241, 9sseldi 3891 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
4311ffvelrnda 6840 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
4435, 36, 12, 15, 37, 42, 43ivthicc 24148 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((𝐹𝑏)[,](𝐹𝑎)) ⊆ ran 𝐹)
4544adantr 485 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → ((𝐹𝑏)[,](𝐹𝑎)) ⊆ ran 𝐹)
4634, 45eqssd 3910 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → ran 𝐹 = ((𝐹𝑏)[,](𝐹𝑎)))
47 rspceov 7195 . . . . . 6 (((𝐹𝑏) ∈ ℝ ∧ (𝐹𝑎) ∈ ℝ ∧ ran 𝐹 = ((𝐹𝑏)[,](𝐹𝑎))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))
4814, 17, 46, 47syl3anc 1369 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))
4948ex 417 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦)))
508, 49syl5bir 246 . . 3 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑏) ≤ (𝐹𝑧)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦)))
5150rexlimdvva 3219 . 2 (𝜑 → (∃𝑎 ∈ (𝐴[,]𝐵)∃𝑏 ∈ (𝐴[,]𝐵)(∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑏) ≤ (𝐹𝑧)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦)))
527, 51mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112  ∀wral 3071  ∃wrex 3072   ⊆ wss 3859   class class class wbr 5030  ran crn 5523   Fn wfn 6328  ⟶wf 6329  ‘cfv 6333  (class class class)co 7148  ℂcc 10563  ℝcr 10564   ≤ cle 10704  [,]cicc 12772  –cn→ccncf 23567 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-pre-sup 10643  ax-mulf 10645 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7403  df-om 7578  df-1st 7691  df-2nd 7692  df-supp 7834  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-2o 8111  df-oadd 8114  df-er 8297  df-map 8416  df-ixp 8478  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-fsupp 8857  df-fi 8898  df-sup 8929  df-inf 8930  df-oi 8997  df-card 9391  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-div 11326  df-nn 11665  df-2 11727  df-3 11728  df-4 11729  df-5 11730  df-6 11731  df-7 11732  df-8 11733  df-9 11734  df-n0 11925  df-z 12011  df-dec 12128  df-uz 12273  df-q 12379  df-rp 12421  df-xneg 12538  df-xadd 12539  df-xmul 12540  df-ioo 12773  df-icc 12776  df-fz 12930  df-fzo 13073  df-seq 13409  df-exp 13470  df-hash 13731  df-cj 14496  df-re 14497  df-im 14498  df-sqrt 14632  df-abs 14633  df-struct 16533  df-ndx 16534  df-slot 16535  df-base 16537  df-sets 16538  df-ress 16539  df-plusg 16626  df-mulr 16627  df-starv 16628  df-sca 16629  df-vsca 16630  df-ip 16631  df-tset 16632  df-ple 16633  df-ds 16635  df-unif 16636  df-hom 16637  df-cco 16638  df-rest 16744  df-topn 16745  df-0g 16763  df-gsum 16764  df-topgen 16765  df-pt 16766  df-prds 16769  df-xrs 16823  df-qtop 16828  df-imas 16829  df-xps 16831  df-mre 16905  df-mrc 16906  df-acs 16908  df-mgm 17908  df-sgrp 17957  df-mnd 17968  df-submnd 18013  df-mulg 18282  df-cntz 18504  df-cmn 18965  df-psmet 20148  df-xmet 20149  df-met 20150  df-bl 20151  df-mopn 20152  df-cnfld 20157  df-top 21584  df-topon 21601  df-topsp 21623  df-bases 21636  df-cn 21917  df-cnp 21918  df-cmp 22077  df-tx 22252  df-hmeo 22445  df-xms 23012  df-ms 23013  df-tms 23014  df-cncf 23569 This theorem is referenced by:  dvcnvrelem1  24706
 Copyright terms: Public domain W3C validator