Step | Hyp | Ref
| Expression |
1 | | evthicc.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | evthicc.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
3 | | evthicc.3 |
. . . 4
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
4 | | evthicc.4 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
5 | 1, 2, 3, 4 | evthicc 24528 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ ∃𝑏 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑏) ≤ (𝐹‘𝑧))) |
6 | | reeanv 3292 |
. . 3
⊢
(∃𝑎 ∈
(𝐴[,]𝐵)∃𝑏 ∈ (𝐴[,]𝐵)(∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑏) ≤ (𝐹‘𝑧)) ↔ (∃𝑎 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ ∃𝑏 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑏) ≤ (𝐹‘𝑧))) |
7 | 5, 6 | sylibr 233 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ (𝐴[,]𝐵)∃𝑏 ∈ (𝐴[,]𝐵)(∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑏) ≤ (𝐹‘𝑧))) |
8 | | r19.26 3094 |
. . . 4
⊢
(∀𝑧 ∈
(𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧)) ↔ (∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑏) ≤ (𝐹‘𝑧))) |
9 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
10 | | cncff 23962 |
. . . . . . . . 9
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
12 | | simprr 769 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑏 ∈ (𝐴[,]𝐵)) |
13 | 11, 12 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑏) ∈ ℝ) |
14 | 13 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → (𝐹‘𝑏) ∈ ℝ) |
15 | | simprl 767 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑎 ∈ (𝐴[,]𝐵)) |
16 | 11, 15 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹‘𝑎) ∈ ℝ) |
17 | 16 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → (𝐹‘𝑎) ∈ ℝ) |
18 | 11 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
19 | 18 | ffnd 6585 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → 𝐹 Fn (𝐴[,]𝐵)) |
20 | 16 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑎) ∈ ℝ) |
21 | | elicc2 13073 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑏) ∈ ℝ ∧ (𝐹‘𝑎) ∈ ℝ) → ((𝐹‘𝑧) ∈ ((𝐹‘𝑏)[,](𝐹‘𝑎)) ↔ ((𝐹‘𝑧) ∈ ℝ ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎)))) |
22 | 13, 20, 21 | syl2an2r 681 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝑧) ∈ ((𝐹‘𝑏)[,](𝐹‘𝑎)) ↔ ((𝐹‘𝑧) ∈ ℝ ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎)))) |
23 | | 3anass 1093 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑧) ∈ ℝ ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎)) ↔ ((𝐹‘𝑧) ∈ ℝ ∧ ((𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎)))) |
24 | 22, 23 | bitrdi 286 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝑧) ∈ ((𝐹‘𝑏)[,](𝐹‘𝑎)) ↔ ((𝐹‘𝑧) ∈ ℝ ∧ ((𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎))))) |
25 | | ancom 460 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧)) ↔ ((𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎))) |
26 | 11 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑧) ∈ ℝ) |
27 | 26 | biantrurd 532 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (((𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎)) ↔ ((𝐹‘𝑧) ∈ ℝ ∧ ((𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎))))) |
28 | 25, 27 | syl5bb 282 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧)) ↔ ((𝐹‘𝑧) ∈ ℝ ∧ ((𝐹‘𝑏) ≤ (𝐹‘𝑧) ∧ (𝐹‘𝑧) ≤ (𝐹‘𝑎))))) |
29 | 24, 28 | bitr4d 281 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝑧) ∈ ((𝐹‘𝑏)[,](𝐹‘𝑎)) ↔ ((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧)))) |
30 | 29 | ralbidva 3119 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ∈ ((𝐹‘𝑏)[,](𝐹‘𝑎)) ↔ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧)))) |
31 | 30 | biimpar 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ∈ ((𝐹‘𝑏)[,](𝐹‘𝑎))) |
32 | | ffnfv 6974 |
. . . . . . . . 9
⊢ (𝐹:(𝐴[,]𝐵)⟶((𝐹‘𝑏)[,](𝐹‘𝑎)) ↔ (𝐹 Fn (𝐴[,]𝐵) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ∈ ((𝐹‘𝑏)[,](𝐹‘𝑎)))) |
33 | 19, 31, 32 | sylanbrc 582 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → 𝐹:(𝐴[,]𝐵)⟶((𝐹‘𝑏)[,](𝐹‘𝑎))) |
34 | 33 | frnd 6592 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → ran 𝐹 ⊆ ((𝐹‘𝑏)[,](𝐹‘𝑎))) |
35 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐴 ∈ ℝ) |
36 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐵 ∈ ℝ) |
37 | | ssidd 3940 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵)) |
38 | | ax-resscn 10859 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
39 | | ssid 3939 |
. . . . . . . . . . 11
⊢ ℂ
⊆ ℂ |
40 | | cncfss 23968 |
. . . . . . . . . . 11
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)) |
41 | 38, 39, 40 | mp2an 688 |
. . . . . . . . . 10
⊢ ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ) |
42 | 41, 9 | sselid 3915 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
43 | 11 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
44 | 35, 36, 12, 15, 37, 42, 43 | ivthicc 24527 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((𝐹‘𝑏)[,](𝐹‘𝑎)) ⊆ ran 𝐹) |
45 | 44 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → ((𝐹‘𝑏)[,](𝐹‘𝑎)) ⊆ ran 𝐹) |
46 | 34, 45 | eqssd 3934 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → ran 𝐹 = ((𝐹‘𝑏)[,](𝐹‘𝑎))) |
47 | | rspceov 7302 |
. . . . . 6
⊢ (((𝐹‘𝑏) ∈ ℝ ∧ (𝐹‘𝑎) ∈ ℝ ∧ ran 𝐹 = ((𝐹‘𝑏)[,](𝐹‘𝑎))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦)) |
48 | 14, 17, 46, 47 | syl3anc 1369 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦)) |
49 | 48 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (∀𝑧 ∈ (𝐴[,]𝐵)((𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ (𝐹‘𝑏) ≤ (𝐹‘𝑧)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))) |
50 | 8, 49 | syl5bir 242 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑏) ≤ (𝐹‘𝑧)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))) |
51 | 50 | rexlimdvva 3222 |
. 2
⊢ (𝜑 → (∃𝑎 ∈ (𝐴[,]𝐵)∃𝑏 ∈ (𝐴[,]𝐵)(∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑧) ≤ (𝐹‘𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹‘𝑏) ≤ (𝐹‘𝑧)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))) |
52 | 7, 51 | mpd 15 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦)) |