![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elringlsmd | Structured version Visualization version GIF version |
Description: Membership in a product of two subsets of a ring, one direction. (Contributed by Thierry Arnoux, 13-Apr-2024.) |
Ref | Expression |
---|---|
elringlsm.1 | ⊢ 𝐵 = (Base‘𝑅) |
elringlsm.2 | ⊢ · = (.r‘𝑅) |
elringlsm.3 | ⊢ 𝐺 = (mulGrp‘𝑅) |
elringlsm.4 | ⊢ × = (LSSum‘𝐺) |
elringlsm.6 | ⊢ (𝜑 → 𝐸 ⊆ 𝐵) |
elringlsm.7 | ⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
elringlsmd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
elringlsmd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐹) |
Ref | Expression |
---|---|
elringlsmd | ⊢ (𝜑 → (𝑋 · 𝑌) ∈ (𝐸 × 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elringlsmd.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
2 | elringlsmd.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐹) | |
3 | eqidd 2726 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) = (𝑋 · 𝑌)) | |
4 | rspceov 7467 | . . 3 ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐹 ∧ (𝑋 · 𝑌) = (𝑋 · 𝑌)) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐹 (𝑋 · 𝑌) = (𝑥 · 𝑦)) | |
5 | 1, 2, 3, 4 | syl3anc 1368 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐹 (𝑋 · 𝑌) = (𝑥 · 𝑦)) |
6 | elringlsm.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
7 | elringlsm.2 | . . 3 ⊢ · = (.r‘𝑅) | |
8 | elringlsm.3 | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
9 | elringlsm.4 | . . 3 ⊢ × = (LSSum‘𝐺) | |
10 | elringlsm.6 | . . 3 ⊢ (𝜑 → 𝐸 ⊆ 𝐵) | |
11 | elringlsm.7 | . . 3 ⊢ (𝜑 → 𝐹 ⊆ 𝐵) | |
12 | 6, 7, 8, 9, 10, 11 | elringlsm 33205 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) ∈ (𝐸 × 𝐹) ↔ ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐹 (𝑋 · 𝑌) = (𝑥 · 𝑦))) |
13 | 5, 12 | mpbird 256 | 1 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ (𝐸 × 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 ⊆ wss 3944 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 .rcmulr 17237 LSSumclsm 19601 mulGrpcmgp 20086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-lsm 19603 df-mgp 20087 |
This theorem is referenced by: idlmulssprm 33254 |
Copyright terms: Public domain | W3C validator |