Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elringlsmd | Structured version Visualization version GIF version |
Description: Membership in a product of two subsets of a ring, one direction. (Contributed by Thierry Arnoux, 13-Apr-2024.) |
Ref | Expression |
---|---|
elringlsm.1 | ⊢ 𝐵 = (Base‘𝑅) |
elringlsm.2 | ⊢ · = (.r‘𝑅) |
elringlsm.3 | ⊢ 𝐺 = (mulGrp‘𝑅) |
elringlsm.4 | ⊢ × = (LSSum‘𝐺) |
elringlsm.6 | ⊢ (𝜑 → 𝐸 ⊆ 𝐵) |
elringlsm.7 | ⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
elringlsmd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
elringlsmd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐹) |
Ref | Expression |
---|---|
elringlsmd | ⊢ (𝜑 → (𝑋 · 𝑌) ∈ (𝐸 × 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elringlsmd.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
2 | elringlsmd.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐹) | |
3 | eqidd 2759 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) = (𝑋 · 𝑌)) | |
4 | rspceov 7203 | . . 3 ⊢ ((𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐹 ∧ (𝑋 · 𝑌) = (𝑋 · 𝑌)) → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐹 (𝑋 · 𝑌) = (𝑥 · 𝑦)) | |
5 | 1, 2, 3, 4 | syl3anc 1368 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐹 (𝑋 · 𝑌) = (𝑥 · 𝑦)) |
6 | elringlsm.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
7 | elringlsm.2 | . . 3 ⊢ · = (.r‘𝑅) | |
8 | elringlsm.3 | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
9 | elringlsm.4 | . . 3 ⊢ × = (LSSum‘𝐺) | |
10 | elringlsm.6 | . . 3 ⊢ (𝜑 → 𝐸 ⊆ 𝐵) | |
11 | elringlsm.7 | . . 3 ⊢ (𝜑 → 𝐹 ⊆ 𝐵) | |
12 | 6, 7, 8, 9, 10, 11 | elringlsm 31114 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) ∈ (𝐸 × 𝐹) ↔ ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐹 (𝑋 · 𝑌) = (𝑥 · 𝑦))) |
13 | 5, 12 | mpbird 260 | 1 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ (𝐸 × 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 ⊆ wss 3860 ‘cfv 6340 (class class class)co 7156 Basecbs 16554 .rcmulr 16637 LSSumclsm 18839 mulGrpcmgp 19320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-plusg 16649 df-lsm 18841 df-mgp 19321 |
This theorem is referenced by: idlmulssprm 31150 |
Copyright terms: Public domain | W3C validator |