MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qaddcl Structured version   Visualization version   GIF version

Theorem qaddcl 12948
Description: Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
qaddcl ((๐ด โˆˆ โ„š โˆง ๐ต โˆˆ โ„š) โ†’ (๐ด + ๐ต) โˆˆ โ„š)

Proof of Theorem qaddcl
Dummy variables ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ค ๐‘ฃ ๐‘ข are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12933 . 2 (๐ด โˆˆ โ„š โ†” โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„• ๐ด = (๐‘ฅ / ๐‘ฆ))
2 elq 12933 . 2 (๐ต โˆˆ โ„š โ†” โˆƒ๐‘ง โˆˆ โ„ค โˆƒ๐‘ค โˆˆ โ„• ๐ต = (๐‘ง / ๐‘ค))
3 nnz 12578 . . . . . . . . . . . 12 (๐‘ค โˆˆ โ„• โ†’ ๐‘ค โˆˆ โ„ค)
4 zmulcl 12610 . . . . . . . . . . . 12 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„ค) โ†’ (๐‘ฅ ยท ๐‘ค) โˆˆ โ„ค)
53, 4sylan2 592 . . . . . . . . . . 11 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•) โ†’ (๐‘ฅ ยท ๐‘ค) โˆˆ โ„ค)
65ad2ant2rl 746 . . . . . . . . . 10 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โ†’ (๐‘ฅ ยท ๐‘ค) โˆˆ โ„ค)
7 simpl 482 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•) โ†’ ๐‘ง โˆˆ โ„ค)
8 nnz 12578 . . . . . . . . . . . 12 (๐‘ฆ โˆˆ โ„• โ†’ ๐‘ฆ โˆˆ โ„ค)
98adantl 481 . . . . . . . . . . 11 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โ†’ ๐‘ฆ โˆˆ โ„ค)
10 zmulcl 12610 . . . . . . . . . . 11 ((๐‘ง โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค) โ†’ (๐‘ง ยท ๐‘ฆ) โˆˆ โ„ค)
117, 9, 10syl2anr 596 . . . . . . . . . 10 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โ†’ (๐‘ง ยท ๐‘ฆ) โˆˆ โ„ค)
126, 11zaddcld 12669 . . . . . . . . 9 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โ†’ ((๐‘ฅ ยท ๐‘ค) + (๐‘ง ยท ๐‘ฆ)) โˆˆ โ„ค)
1312adantr 480 . . . . . . . 8 ((((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โˆง (๐ด = (๐‘ฅ / ๐‘ฆ) โˆง ๐ต = (๐‘ง / ๐‘ค))) โ†’ ((๐‘ฅ ยท ๐‘ค) + (๐‘ง ยท ๐‘ฆ)) โˆˆ โ„ค)
14 nnmulcl 12235 . . . . . . . . . 10 ((๐‘ฆ โˆˆ โ„• โˆง ๐‘ค โˆˆ โ„•) โ†’ (๐‘ฆ ยท ๐‘ค) โˆˆ โ„•)
1514ad2ant2l 743 . . . . . . . . 9 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โ†’ (๐‘ฆ ยท ๐‘ค) โˆˆ โ„•)
1615adantr 480 . . . . . . . 8 ((((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โˆง (๐ด = (๐‘ฅ / ๐‘ฆ) โˆง ๐ต = (๐‘ง / ๐‘ค))) โ†’ (๐‘ฆ ยท ๐‘ค) โˆˆ โ„•)
17 oveq12 7411 . . . . . . . . 9 ((๐ด = (๐‘ฅ / ๐‘ฆ) โˆง ๐ต = (๐‘ง / ๐‘ค)) โ†’ (๐ด + ๐ต) = ((๐‘ฅ / ๐‘ฆ) + (๐‘ง / ๐‘ค)))
18 zcn 12562 . . . . . . . . . . . 12 (๐‘ฅ โˆˆ โ„ค โ†’ ๐‘ฅ โˆˆ โ„‚)
19 zcn 12562 . . . . . . . . . . . 12 (๐‘ง โˆˆ โ„ค โ†’ ๐‘ง โˆˆ โ„‚)
2018, 19anim12i 612 . . . . . . . . . . 11 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ง โˆˆ โ„ค) โ†’ (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ง โˆˆ โ„‚))
21 nncn 12219 . . . . . . . . . . . . 13 (๐‘ฆ โˆˆ โ„• โ†’ ๐‘ฆ โˆˆ โ„‚)
22 nnne0 12245 . . . . . . . . . . . . 13 (๐‘ฆ โˆˆ โ„• โ†’ ๐‘ฆ โ‰  0)
2321, 22jca 511 . . . . . . . . . . . 12 (๐‘ฆ โˆˆ โ„• โ†’ (๐‘ฆ โˆˆ โ„‚ โˆง ๐‘ฆ โ‰  0))
24 nncn 12219 . . . . . . . . . . . . 13 (๐‘ค โˆˆ โ„• โ†’ ๐‘ค โˆˆ โ„‚)
25 nnne0 12245 . . . . . . . . . . . . 13 (๐‘ค โˆˆ โ„• โ†’ ๐‘ค โ‰  0)
2624, 25jca 511 . . . . . . . . . . . 12 (๐‘ค โˆˆ โ„• โ†’ (๐‘ค โˆˆ โ„‚ โˆง ๐‘ค โ‰  0))
2723, 26anim12i 612 . . . . . . . . . . 11 ((๐‘ฆ โˆˆ โ„• โˆง ๐‘ค โˆˆ โ„•) โ†’ ((๐‘ฆ โˆˆ โ„‚ โˆง ๐‘ฆ โ‰  0) โˆง (๐‘ค โˆˆ โ„‚ โˆง ๐‘ค โ‰  0)))
28 divadddiv 11928 . . . . . . . . . . 11 (((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ง โˆˆ โ„‚) โˆง ((๐‘ฆ โˆˆ โ„‚ โˆง ๐‘ฆ โ‰  0) โˆง (๐‘ค โˆˆ โ„‚ โˆง ๐‘ค โ‰  0))) โ†’ ((๐‘ฅ / ๐‘ฆ) + (๐‘ง / ๐‘ค)) = (((๐‘ฅ ยท ๐‘ค) + (๐‘ง ยท ๐‘ฆ)) / (๐‘ฆ ยท ๐‘ค)))
2920, 27, 28syl2an 595 . . . . . . . . . 10 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ง โˆˆ โ„ค) โˆง (๐‘ฆ โˆˆ โ„• โˆง ๐‘ค โˆˆ โ„•)) โ†’ ((๐‘ฅ / ๐‘ฆ) + (๐‘ง / ๐‘ค)) = (((๐‘ฅ ยท ๐‘ค) + (๐‘ง ยท ๐‘ฆ)) / (๐‘ฆ ยท ๐‘ค)))
3029an4s 657 . . . . . . . . 9 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โ†’ ((๐‘ฅ / ๐‘ฆ) + (๐‘ง / ๐‘ค)) = (((๐‘ฅ ยท ๐‘ค) + (๐‘ง ยท ๐‘ฆ)) / (๐‘ฆ ยท ๐‘ค)))
3117, 30sylan9eqr 2786 . . . . . . . 8 ((((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โˆง (๐ด = (๐‘ฅ / ๐‘ฆ) โˆง ๐ต = (๐‘ง / ๐‘ค))) โ†’ (๐ด + ๐ต) = (((๐‘ฅ ยท ๐‘ค) + (๐‘ง ยท ๐‘ฆ)) / (๐‘ฆ ยท ๐‘ค)))
32 rspceov 7449 . . . . . . . . 9 ((((๐‘ฅ ยท ๐‘ค) + (๐‘ง ยท ๐‘ฆ)) โˆˆ โ„ค โˆง (๐‘ฆ ยท ๐‘ค) โˆˆ โ„• โˆง (๐ด + ๐ต) = (((๐‘ฅ ยท ๐‘ค) + (๐‘ง ยท ๐‘ฆ)) / (๐‘ฆ ยท ๐‘ค))) โ†’ โˆƒ๐‘ข โˆˆ โ„ค โˆƒ๐‘ฃ โˆˆ โ„• (๐ด + ๐ต) = (๐‘ข / ๐‘ฃ))
33 elq 12933 . . . . . . . . 9 ((๐ด + ๐ต) โˆˆ โ„š โ†” โˆƒ๐‘ข โˆˆ โ„ค โˆƒ๐‘ฃ โˆˆ โ„• (๐ด + ๐ต) = (๐‘ข / ๐‘ฃ))
3432, 33sylibr 233 . . . . . . . 8 ((((๐‘ฅ ยท ๐‘ค) + (๐‘ง ยท ๐‘ฆ)) โˆˆ โ„ค โˆง (๐‘ฆ ยท ๐‘ค) โˆˆ โ„• โˆง (๐ด + ๐ต) = (((๐‘ฅ ยท ๐‘ค) + (๐‘ง ยท ๐‘ฆ)) / (๐‘ฆ ยท ๐‘ค))) โ†’ (๐ด + ๐ต) โˆˆ โ„š)
3513, 16, 31, 34syl3anc 1368 . . . . . . 7 ((((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โˆง (๐ด = (๐‘ฅ / ๐‘ฆ) โˆง ๐ต = (๐‘ง / ๐‘ค))) โ†’ (๐ด + ๐ต) โˆˆ โ„š)
3635an4s 657 . . . . . 6 ((((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง ๐ด = (๐‘ฅ / ๐‘ฆ)) โˆง ((๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•) โˆง ๐ต = (๐‘ง / ๐‘ค))) โ†’ (๐ด + ๐ต) โˆˆ โ„š)
3736exp43 436 . . . . 5 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โ†’ (๐ด = (๐‘ฅ / ๐‘ฆ) โ†’ ((๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•) โ†’ (๐ต = (๐‘ง / ๐‘ค) โ†’ (๐ด + ๐ต) โˆˆ โ„š))))
3837rexlimivv 3191 . . . 4 (โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„• ๐ด = (๐‘ฅ / ๐‘ฆ) โ†’ ((๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•) โ†’ (๐ต = (๐‘ง / ๐‘ค) โ†’ (๐ด + ๐ต) โˆˆ โ„š)))
3938rexlimdvv 3202 . . 3 (โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„• ๐ด = (๐‘ฅ / ๐‘ฆ) โ†’ (โˆƒ๐‘ง โˆˆ โ„ค โˆƒ๐‘ค โˆˆ โ„• ๐ต = (๐‘ง / ๐‘ค) โ†’ (๐ด + ๐ต) โˆˆ โ„š))
4039imp 406 . 2 ((โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„• ๐ด = (๐‘ฅ / ๐‘ฆ) โˆง โˆƒ๐‘ง โˆˆ โ„ค โˆƒ๐‘ค โˆˆ โ„• ๐ต = (๐‘ง / ๐‘ค)) โ†’ (๐ด + ๐ต) โˆˆ โ„š)
411, 2, 40syl2anb 597 1 ((๐ด โˆˆ โ„š โˆง ๐ต โˆˆ โ„š) โ†’ (๐ด + ๐ต) โˆˆ โ„š)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2932  โˆƒwrex 3062  (class class class)co 7402  โ„‚cc 11105  0cc0 11107   + caddc 11110   ยท cmul 11112   / cdiv 11870  โ„•cn 12211  โ„คcz 12557  โ„šcq 12931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-n0 12472  df-z 12558  df-q 12932
This theorem is referenced by:  qsubcl  12951  qrevaddcl  12954  pcaddlem  16826  pcadd2  16828  qsubdrg  21302  vitalilem1  25481  qaa  26201  padicabv  27504  ostth3  27512  dp2clq  32540  irrdifflemf  36707  irrdiff  36708  mblfinlem1  37029  3cubes  41980  rmxyadd  42212  mpaaeu  42444  aacllem  48096
  Copyright terms: Public domain W3C validator