MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qaddcl Structured version   Visualization version   GIF version

Theorem qaddcl 12890
Description: Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
qaddcl ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ)

Proof of Theorem qaddcl
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12875 . 2 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 elq 12875 . 2 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
3 nnz 12520 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → 𝑤 ∈ ℤ)
4 zmulcl 12552 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑥 · 𝑤) ∈ ℤ)
53, 4sylan2 593 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑤 ∈ ℕ) → (𝑥 · 𝑤) ∈ ℤ)
65ad2ant2rl 747 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑥 · 𝑤) ∈ ℤ)
7 simpl 483 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) → 𝑧 ∈ ℤ)
8 nnz 12520 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
98adantl 482 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
10 zmulcl 12552 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑧 · 𝑦) ∈ ℤ)
117, 9, 10syl2anr 597 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑧 · 𝑦) ∈ ℤ)
126, 11zaddcld 12611 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → ((𝑥 · 𝑤) + (𝑧 · 𝑦)) ∈ ℤ)
1312adantr 481 . . . . . . . 8 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → ((𝑥 · 𝑤) + (𝑧 · 𝑦)) ∈ ℤ)
14 nnmulcl 12177 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 · 𝑤) ∈ ℕ)
1514ad2ant2l 744 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑦 · 𝑤) ∈ ℕ)
1615adantr 481 . . . . . . . 8 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝑦 · 𝑤) ∈ ℕ)
17 oveq12 7366 . . . . . . . . 9 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 + 𝐵) = ((𝑥 / 𝑦) + (𝑧 / 𝑤)))
18 zcn 12504 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
19 zcn 12504 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
2018, 19anim12i 613 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ))
21 nncn 12161 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
22 nnne0 12187 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
2321, 22jca 512 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
24 nncn 12161 . . . . . . . . . . . . 13 (𝑤 ∈ ℕ → 𝑤 ∈ ℂ)
25 nnne0 12187 . . . . . . . . . . . . 13 (𝑤 ∈ ℕ → 𝑤 ≠ 0)
2624, 25jca 512 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
2723, 26anim12i 613 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)))
28 divadddiv 11870 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))) → ((𝑥 / 𝑦) + (𝑧 / 𝑤)) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤)))
2920, 27, 28syl2an 596 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 / 𝑦) + (𝑧 / 𝑤)) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤)))
3029an4s 658 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → ((𝑥 / 𝑦) + (𝑧 / 𝑤)) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤)))
3117, 30sylan9eqr 2798 . . . . . . . 8 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 + 𝐵) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤)))
32 rspceov 7404 . . . . . . . . 9 ((((𝑥 · 𝑤) + (𝑧 · 𝑦)) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ ∧ (𝐴 + 𝐵) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤))) → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℕ (𝐴 + 𝐵) = (𝑢 / 𝑣))
33 elq 12875 . . . . . . . . 9 ((𝐴 + 𝐵) ∈ ℚ ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℕ (𝐴 + 𝐵) = (𝑢 / 𝑣))
3432, 33sylibr 233 . . . . . . . 8 ((((𝑥 · 𝑤) + (𝑧 · 𝑦)) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ ∧ (𝐴 + 𝐵) = (((𝑥 · 𝑤) + (𝑧 · 𝑦)) / (𝑦 · 𝑤))) → (𝐴 + 𝐵) ∈ ℚ)
3513, 16, 31, 34syl3anc 1371 . . . . . . 7 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 + 𝐵) ∈ ℚ)
3635an4s 658 . . . . . 6 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 + 𝐵) ∈ ℚ)
3736exp43 437 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) → (𝐵 = (𝑧 / 𝑤) → (𝐴 + 𝐵) ∈ ℚ))))
3837rexlimivv 3196 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) → (𝐵 = (𝑧 / 𝑤) → (𝐴 + 𝐵) ∈ ℚ)))
3938rexlimdvv 3204 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤) → (𝐴 + 𝐵) ∈ ℚ))
4039imp 407 . 2 ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝐴 + 𝐵) ∈ ℚ)
411, 2, 40syl2anb 598 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  (class class class)co 7357  cc 11049  0cc0 11051   + caddc 11054   · cmul 11056   / cdiv 11812  cn 12153  cz 12499  cq 12873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-q 12874
This theorem is referenced by:  qsubcl  12893  qrevaddcl  12896  pcaddlem  16760  pcadd2  16762  qsubdrg  20849  vitalilem1  24972  qaa  25683  padicabv  26978  ostth3  26986  dp2clq  31737  irrdifflemf  35796  irrdiff  35797  mblfinlem1  36115  3cubes  40999  rmxyadd  41231  mpaaeu  41463  aacllem  47238
  Copyright terms: Public domain W3C validator