MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qmulcl Structured version   Visualization version   GIF version

Theorem qmulcl 12958
Description: Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
qmulcl ((๐ด โˆˆ โ„š โˆง ๐ต โˆˆ โ„š) โ†’ (๐ด ยท ๐ต) โˆˆ โ„š)

Proof of Theorem qmulcl
Dummy variables ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ค ๐‘ฃ ๐‘ข are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12941 . 2 (๐ด โˆˆ โ„š โ†” โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„• ๐ด = (๐‘ฅ / ๐‘ฆ))
2 elq 12941 . 2 (๐ต โˆˆ โ„š โ†” โˆƒ๐‘ง โˆˆ โ„ค โˆƒ๐‘ค โˆˆ โ„• ๐ต = (๐‘ง / ๐‘ค))
3 zmulcl 12618 . . . . . . . . . 10 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ง โˆˆ โ„ค) โ†’ (๐‘ฅ ยท ๐‘ง) โˆˆ โ„ค)
4 nnmulcl 12243 . . . . . . . . . 10 ((๐‘ฆ โˆˆ โ„• โˆง ๐‘ค โˆˆ โ„•) โ†’ (๐‘ฆ ยท ๐‘ค) โˆˆ โ„•)
53, 4anim12i 612 . . . . . . . . 9 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ง โˆˆ โ„ค) โˆง (๐‘ฆ โˆˆ โ„• โˆง ๐‘ค โˆˆ โ„•)) โ†’ ((๐‘ฅ ยท ๐‘ง) โˆˆ โ„ค โˆง (๐‘ฆ ยท ๐‘ค) โˆˆ โ„•))
65an4s 657 . . . . . . . 8 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โ†’ ((๐‘ฅ ยท ๐‘ง) โˆˆ โ„ค โˆง (๐‘ฆ ยท ๐‘ค) โˆˆ โ„•))
7 oveq12 7421 . . . . . . . . 9 ((๐ด = (๐‘ฅ / ๐‘ฆ) โˆง ๐ต = (๐‘ง / ๐‘ค)) โ†’ (๐ด ยท ๐ต) = ((๐‘ฅ / ๐‘ฆ) ยท (๐‘ง / ๐‘ค)))
8 zcn 12570 . . . . . . . . . . . 12 (๐‘ฅ โˆˆ โ„ค โ†’ ๐‘ฅ โˆˆ โ„‚)
9 zcn 12570 . . . . . . . . . . . 12 (๐‘ง โˆˆ โ„ค โ†’ ๐‘ง โˆˆ โ„‚)
108, 9anim12i 612 . . . . . . . . . . 11 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ง โˆˆ โ„ค) โ†’ (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ง โˆˆ โ„‚))
1110ad2ant2r 744 . . . . . . . . . 10 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โ†’ (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ง โˆˆ โ„‚))
12 nncn 12227 . . . . . . . . . . . . 13 (๐‘ฆ โˆˆ โ„• โ†’ ๐‘ฆ โˆˆ โ„‚)
13 nnne0 12253 . . . . . . . . . . . . 13 (๐‘ฆ โˆˆ โ„• โ†’ ๐‘ฆ โ‰  0)
1412, 13jca 511 . . . . . . . . . . . 12 (๐‘ฆ โˆˆ โ„• โ†’ (๐‘ฆ โˆˆ โ„‚ โˆง ๐‘ฆ โ‰  0))
15 nncn 12227 . . . . . . . . . . . . 13 (๐‘ค โˆˆ โ„• โ†’ ๐‘ค โˆˆ โ„‚)
16 nnne0 12253 . . . . . . . . . . . . 13 (๐‘ค โˆˆ โ„• โ†’ ๐‘ค โ‰  0)
1715, 16jca 511 . . . . . . . . . . . 12 (๐‘ค โˆˆ โ„• โ†’ (๐‘ค โˆˆ โ„‚ โˆง ๐‘ค โ‰  0))
1814, 17anim12i 612 . . . . . . . . . . 11 ((๐‘ฆ โˆˆ โ„• โˆง ๐‘ค โˆˆ โ„•) โ†’ ((๐‘ฆ โˆˆ โ„‚ โˆง ๐‘ฆ โ‰  0) โˆง (๐‘ค โˆˆ โ„‚ โˆง ๐‘ค โ‰  0)))
1918ad2ant2l 743 . . . . . . . . . 10 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โ†’ ((๐‘ฆ โˆˆ โ„‚ โˆง ๐‘ฆ โ‰  0) โˆง (๐‘ค โˆˆ โ„‚ โˆง ๐‘ค โ‰  0)))
20 divmuldiv 11921 . . . . . . . . . 10 (((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ง โˆˆ โ„‚) โˆง ((๐‘ฆ โˆˆ โ„‚ โˆง ๐‘ฆ โ‰  0) โˆง (๐‘ค โˆˆ โ„‚ โˆง ๐‘ค โ‰  0))) โ†’ ((๐‘ฅ / ๐‘ฆ) ยท (๐‘ง / ๐‘ค)) = ((๐‘ฅ ยท ๐‘ง) / (๐‘ฆ ยท ๐‘ค)))
2111, 19, 20syl2anc 583 . . . . . . . . 9 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โ†’ ((๐‘ฅ / ๐‘ฆ) ยท (๐‘ง / ๐‘ค)) = ((๐‘ฅ ยท ๐‘ง) / (๐‘ฆ ยท ๐‘ค)))
227, 21sylan9eqr 2793 . . . . . . . 8 ((((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โˆง (๐ด = (๐‘ฅ / ๐‘ฆ) โˆง ๐ต = (๐‘ง / ๐‘ค))) โ†’ (๐ด ยท ๐ต) = ((๐‘ฅ ยท ๐‘ง) / (๐‘ฆ ยท ๐‘ค)))
23 rspceov 7459 . . . . . . . . . 10 (((๐‘ฅ ยท ๐‘ง) โˆˆ โ„ค โˆง (๐‘ฆ ยท ๐‘ค) โˆˆ โ„• โˆง (๐ด ยท ๐ต) = ((๐‘ฅ ยท ๐‘ง) / (๐‘ฆ ยท ๐‘ค))) โ†’ โˆƒ๐‘ฃ โˆˆ โ„ค โˆƒ๐‘ข โˆˆ โ„• (๐ด ยท ๐ต) = (๐‘ฃ / ๐‘ข))
24233expa 1117 . . . . . . . . 9 ((((๐‘ฅ ยท ๐‘ง) โˆˆ โ„ค โˆง (๐‘ฆ ยท ๐‘ค) โˆˆ โ„•) โˆง (๐ด ยท ๐ต) = ((๐‘ฅ ยท ๐‘ง) / (๐‘ฆ ยท ๐‘ค))) โ†’ โˆƒ๐‘ฃ โˆˆ โ„ค โˆƒ๐‘ข โˆˆ โ„• (๐ด ยท ๐ต) = (๐‘ฃ / ๐‘ข))
25 elq 12941 . . . . . . . . 9 ((๐ด ยท ๐ต) โˆˆ โ„š โ†” โˆƒ๐‘ฃ โˆˆ โ„ค โˆƒ๐‘ข โˆˆ โ„• (๐ด ยท ๐ต) = (๐‘ฃ / ๐‘ข))
2624, 25sylibr 233 . . . . . . . 8 ((((๐‘ฅ ยท ๐‘ง) โˆˆ โ„ค โˆง (๐‘ฆ ยท ๐‘ค) โˆˆ โ„•) โˆง (๐ด ยท ๐ต) = ((๐‘ฅ ยท ๐‘ง) / (๐‘ฆ ยท ๐‘ค))) โ†’ (๐ด ยท ๐ต) โˆˆ โ„š)
276, 22, 26syl2an2r 682 . . . . . . 7 ((((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง (๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•)) โˆง (๐ด = (๐‘ฅ / ๐‘ฆ) โˆง ๐ต = (๐‘ง / ๐‘ค))) โ†’ (๐ด ยท ๐ต) โˆˆ โ„š)
2827an4s 657 . . . . . 6 ((((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โˆง ๐ด = (๐‘ฅ / ๐‘ฆ)) โˆง ((๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•) โˆง ๐ต = (๐‘ง / ๐‘ค))) โ†’ (๐ด ยท ๐ต) โˆˆ โ„š)
2928exp43 436 . . . . 5 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„•) โ†’ (๐ด = (๐‘ฅ / ๐‘ฆ) โ†’ ((๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•) โ†’ (๐ต = (๐‘ง / ๐‘ค) โ†’ (๐ด ยท ๐ต) โˆˆ โ„š))))
3029rexlimivv 3198 . . . 4 (โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„• ๐ด = (๐‘ฅ / ๐‘ฆ) โ†’ ((๐‘ง โˆˆ โ„ค โˆง ๐‘ค โˆˆ โ„•) โ†’ (๐ต = (๐‘ง / ๐‘ค) โ†’ (๐ด ยท ๐ต) โˆˆ โ„š)))
3130rexlimdvv 3209 . . 3 (โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„• ๐ด = (๐‘ฅ / ๐‘ฆ) โ†’ (โˆƒ๐‘ง โˆˆ โ„ค โˆƒ๐‘ค โˆˆ โ„• ๐ต = (๐‘ง / ๐‘ค) โ†’ (๐ด ยท ๐ต) โˆˆ โ„š))
3231imp 406 . 2 ((โˆƒ๐‘ฅ โˆˆ โ„ค โˆƒ๐‘ฆ โˆˆ โ„• ๐ด = (๐‘ฅ / ๐‘ฆ) โˆง โˆƒ๐‘ง โˆˆ โ„ค โˆƒ๐‘ค โˆˆ โ„• ๐ต = (๐‘ง / ๐‘ค)) โ†’ (๐ด ยท ๐ต) โˆˆ โ„š)
331, 2, 32syl2anb 597 1 ((๐ด โˆˆ โ„š โˆง ๐ต โˆˆ โ„š) โ†’ (๐ด ยท ๐ต) โˆˆ โ„š)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   = wceq 1540   โˆˆ wcel 2105   โ‰  wne 2939  โˆƒwrex 3069  (class class class)co 7412  โ„‚cc 11114  0cc0 11116   ยท cmul 11121   / cdiv 11878  โ„•cn 12219  โ„คcz 12565  โ„šcq 12939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-n0 12480  df-z 12566  df-q 12940
This theorem is referenced by:  qdivcl  12961  qexpcl  14050  qexpclz  14054  qsqcl  14102  pcaddlem  16828  qsubdrg  21286  qaa  26175  padicabv  27476  ostth2lem2  27480  ostth3  27484  3cubeslem2  41886  3cubes  41891  rmxyadd  42123  mpaaeu  42355  aacllem  48010
  Copyright terms: Public domain W3C validator