MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qmulcl Structured version   Visualization version   GIF version

Theorem qmulcl 12988
Description: Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
qmulcl ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℚ)

Proof of Theorem qmulcl
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12971 . 2 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
2 elq 12971 . 2 (𝐵 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤))
3 zmulcl 12646 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑥 · 𝑧) ∈ ℤ)
4 nnmulcl 12269 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 · 𝑤) ∈ ℕ)
53, 4anim12i 613 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 · 𝑧) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ))
65an4s 660 . . . . . . . 8 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → ((𝑥 · 𝑧) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ))
7 oveq12 7419 . . . . . . . . 9 ((𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤)) → (𝐴 · 𝐵) = ((𝑥 / 𝑦) · (𝑧 / 𝑤)))
8 zcn 12598 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
9 zcn 12598 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
108, 9anim12i 613 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ))
1110ad2ant2r 747 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ))
12 nncn 12253 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
13 nnne0 12279 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1412, 13jca 511 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
15 nncn 12253 . . . . . . . . . . . . 13 (𝑤 ∈ ℕ → 𝑤 ∈ ℂ)
16 nnne0 12279 . . . . . . . . . . . . 13 (𝑤 ∈ ℕ → 𝑤 ≠ 0)
1715, 16jca 511 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
1814, 17anim12i 613 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)))
1918ad2ant2l 746 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0)))
20 divmuldiv 11946 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))) → ((𝑥 / 𝑦) · (𝑧 / 𝑤)) = ((𝑥 · 𝑧) / (𝑦 · 𝑤)))
2111, 19, 20syl2anc 584 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → ((𝑥 / 𝑦) · (𝑧 / 𝑤)) = ((𝑥 · 𝑧) / (𝑦 · 𝑤)))
227, 21sylan9eqr 2793 . . . . . . . 8 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 · 𝐵) = ((𝑥 · 𝑧) / (𝑦 · 𝑤)))
23 rspceov 7459 . . . . . . . . . 10 (((𝑥 · 𝑧) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ ∧ (𝐴 · 𝐵) = ((𝑥 · 𝑧) / (𝑦 · 𝑤))) → ∃𝑣 ∈ ℤ ∃𝑢 ∈ ℕ (𝐴 · 𝐵) = (𝑣 / 𝑢))
24233expa 1118 . . . . . . . . 9 ((((𝑥 · 𝑧) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ) ∧ (𝐴 · 𝐵) = ((𝑥 · 𝑧) / (𝑦 · 𝑤))) → ∃𝑣 ∈ ℤ ∃𝑢 ∈ ℕ (𝐴 · 𝐵) = (𝑣 / 𝑢))
25 elq 12971 . . . . . . . . 9 ((𝐴 · 𝐵) ∈ ℚ ↔ ∃𝑣 ∈ ℤ ∃𝑢 ∈ ℕ (𝐴 · 𝐵) = (𝑣 / 𝑢))
2624, 25sylibr 234 . . . . . . . 8 ((((𝑥 · 𝑧) ∈ ℤ ∧ (𝑦 · 𝑤) ∈ ℕ) ∧ (𝐴 · 𝐵) = ((𝑥 · 𝑧) / (𝑦 · 𝑤))) → (𝐴 · 𝐵) ∈ ℚ)
276, 22, 26syl2an2r 685 . . . . . . 7 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ (𝐴 = (𝑥 / 𝑦) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 · 𝐵) ∈ ℚ)
2827an4s 660 . . . . . 6 ((((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) ∧ 𝐴 = (𝑥 / 𝑦)) ∧ ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) ∧ 𝐵 = (𝑧 / 𝑤))) → (𝐴 · 𝐵) ∈ ℚ)
2928exp43 436 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝐴 = (𝑥 / 𝑦) → ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) → (𝐵 = (𝑧 / 𝑤) → (𝐴 · 𝐵) ∈ ℚ))))
3029rexlimivv 3187 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ) → (𝐵 = (𝑧 / 𝑤) → (𝐴 · 𝐵) ∈ ℚ)))
3130rexlimdvv 3201 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤) → (𝐴 · 𝐵) ∈ ℚ))
3231imp 406 . 2 ((∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦) ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝐵 = (𝑧 / 𝑤)) → (𝐴 · 𝐵) ∈ ℚ)
331, 2, 32syl2anb 598 1 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 · 𝐵) ∈ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  wrex 3061  (class class class)co 7410  cc 11132  0cc0 11134   · cmul 11139   / cdiv 11899  cn 12245  cz 12593  cq 12969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-n0 12507  df-z 12594  df-q 12970
This theorem is referenced by:  qdivcl  12991  qexpcl  14100  qexpclz  14104  qsqcl  14153  pcaddlem  16913  qsubdrg  21392  qaa  26288  padicabv  27598  ostth2lem2  27602  ostth3  27606  zringfrac  33574  3cubeslem2  42675  3cubes  42680  rmxyadd  42912  mpaaeu  43141  aacllem  49632
  Copyright terms: Public domain W3C validator