MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelvalix Structured version   Visualization version   GIF version

Theorem lsmelvalix 19554
Description: Subspace sum membership (for a group or vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v 𝐵 = (Base‘𝐺)
lsmfval.a + = (+g𝐺)
lsmfval.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmelvalix (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑋𝑇𝑌𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))

Proof of Theorem lsmelvalix
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (𝑋 + 𝑌) = (𝑋 + 𝑌)
2 rspceov 7395 . . 3 ((𝑋𝑇𝑌𝑈 ∧ (𝑋 + 𝑌) = (𝑋 + 𝑌)) → ∃𝑥𝑇𝑦𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦))
31, 2mp3an3 1452 . 2 ((𝑋𝑇𝑌𝑈) → ∃𝑥𝑇𝑦𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦))
4 lsmfval.v . . . 4 𝐵 = (Base‘𝐺)
5 lsmfval.a . . . 4 + = (+g𝐺)
6 lsmfval.s . . . 4 = (LSSum‘𝐺)
74, 5, 6lsmelvalx 19553 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → ((𝑋 + 𝑌) ∈ (𝑇 𝑈) ↔ ∃𝑥𝑇𝑦𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)))
87biimpar 477 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ ∃𝑥𝑇𝑦𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))
93, 8sylan2 593 1 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑋𝑇𝑌𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  wss 3902  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  LSSumclsm 19547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-lsm 19549
This theorem is referenced by:  lsmub1x  19559  lsmub2x  19560  lsmelvali  19563  lsmsubm  19566  kercvrlsm  43122
  Copyright terms: Public domain W3C validator