![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmelvalix | Structured version Visualization version GIF version |
Description: Subspace sum membership (for a group or vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmfval.a | ⊢ + = (+g‘𝐺) |
lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmelvalix | ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (𝑋 + 𝑌) = (𝑋 + 𝑌) | |
2 | rspceov 7480 | . . 3 ⊢ ((𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈 ∧ (𝑋 + 𝑌) = (𝑋 + 𝑌)) → ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) | |
3 | 1, 2 | mp3an3 1449 | . 2 ⊢ ((𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈) → ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) |
4 | lsmfval.v | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
5 | lsmfval.a | . . . 4 ⊢ + = (+g‘𝐺) | |
6 | lsmfval.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
7 | 4, 5, 6 | lsmelvalx 19673 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → ((𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦))) |
8 | 7 | biimpar 477 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
9 | 3, 8 | sylan2 593 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 LSSumclsm 19667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-lsm 19669 |
This theorem is referenced by: lsmub1x 19679 lsmub2x 19680 lsmelvali 19683 lsmsubm 19686 kercvrlsm 43072 |
Copyright terms: Public domain | W3C validator |