MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmelvalix Structured version   Visualization version   GIF version

Theorem lsmelvalix 19571
Description: Subspace sum membership (for a group or vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmfval.v 𝐵 = (Base‘𝐺)
lsmfval.a + = (+g𝐺)
lsmfval.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmelvalix (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑋𝑇𝑌𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))

Proof of Theorem lsmelvalix
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (𝑋 + 𝑌) = (𝑋 + 𝑌)
2 rspceov 7436 . . 3 ((𝑋𝑇𝑌𝑈 ∧ (𝑋 + 𝑌) = (𝑋 + 𝑌)) → ∃𝑥𝑇𝑦𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦))
31, 2mp3an3 1452 . 2 ((𝑋𝑇𝑌𝑈) → ∃𝑥𝑇𝑦𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦))
4 lsmfval.v . . . 4 𝐵 = (Base‘𝐺)
5 lsmfval.a . . . 4 + = (+g𝐺)
6 lsmfval.s . . . 4 = (LSSum‘𝐺)
74, 5, 6lsmelvalx 19570 . . 3 ((𝐺𝑉𝑇𝐵𝑈𝐵) → ((𝑋 + 𝑌) ∈ (𝑇 𝑈) ↔ ∃𝑥𝑇𝑦𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)))
87biimpar 477 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ ∃𝑥𝑇𝑦𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))
93, 8sylan2 593 1 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ (𝑋𝑇𝑌𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  wss 3914  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  LSSumclsm 19564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-lsm 19566
This theorem is referenced by:  lsmub1x  19576  lsmub2x  19577  lsmelvali  19580  lsmsubm  19583  kercvrlsm  43072
  Copyright terms: Public domain W3C validator