| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmelvalix | Structured version Visualization version GIF version | ||
| Description: Subspace sum membership (for a group or vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
| lsmfval.a | ⊢ + = (+g‘𝐺) |
| lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmelvalix | ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (𝑋 + 𝑌) = (𝑋 + 𝑌) | |
| 2 | rspceov 7401 | . . 3 ⊢ ((𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈 ∧ (𝑋 + 𝑌) = (𝑋 + 𝑌)) → ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) | |
| 3 | 1, 2 | mp3an3 1452 | . 2 ⊢ ((𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈) → ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) |
| 4 | lsmfval.v | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | lsmfval.a | . . . 4 ⊢ + = (+g‘𝐺) | |
| 6 | lsmfval.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
| 7 | 4, 5, 6 | lsmelvalx 19554 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → ((𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦))) |
| 8 | 7 | biimpar 477 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
| 9 | 3, 8 | sylan2 593 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ⊆ wss 3898 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 LSSumclsm 19548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-lsm 19550 |
| This theorem is referenced by: lsmub1x 19560 lsmub2x 19561 lsmelvali 19564 lsmsubm 19567 kercvrlsm 43201 |
| Copyright terms: Public domain | W3C validator |