![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmelvalix | Structured version Visualization version GIF version |
Description: Subspace sum membership (for a group or vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmfval.a | ⊢ + = (+g‘𝐺) |
lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmelvalix | ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ (𝑋 + 𝑌) = (𝑋 + 𝑌) | |
2 | rspceov 7472 | . . 3 ⊢ ((𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈 ∧ (𝑋 + 𝑌) = (𝑋 + 𝑌)) → ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) | |
3 | 1, 2 | mp3an3 1447 | . 2 ⊢ ((𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈) → ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) |
4 | lsmfval.v | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
5 | lsmfval.a | . . . 4 ⊢ + = (+g‘𝐺) | |
6 | lsmfval.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
7 | 4, 5, 6 | lsmelvalx 19638 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → ((𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦))) |
8 | 7 | biimpar 476 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
9 | 3, 8 | sylan2 591 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 ⊆ wss 3947 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 +gcplusg 17266 LSSumclsm 19632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 8003 df-2nd 8004 df-lsm 19634 |
This theorem is referenced by: lsmub1x 19644 lsmub2x 19645 lsmelvali 19648 lsmsubm 19651 kercvrlsm 42744 |
Copyright terms: Public domain | W3C validator |