Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmelvalix | Structured version Visualization version GIF version |
Description: Subspace sum membership (for a group or vector space). (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmfval.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmfval.a | ⊢ + = (+g‘𝐺) |
lsmfval.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmelvalix | ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (𝑋 + 𝑌) = (𝑋 + 𝑌) | |
2 | rspceov 7389 | . . 3 ⊢ ((𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈 ∧ (𝑋 + 𝑌) = (𝑋 + 𝑌)) → ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) | |
3 | 1, 2 | mp3an3 1450 | . 2 ⊢ ((𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈) → ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) |
4 | lsmfval.v | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
5 | lsmfval.a | . . . 4 ⊢ + = (+g‘𝐺) | |
6 | lsmfval.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
7 | 4, 5, 6 | lsmelvalx 19342 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → ((𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦))) |
8 | 7 | biimpar 479 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ ∃𝑥 ∈ 𝑇 ∃𝑦 ∈ 𝑈 (𝑋 + 𝑌) = (𝑥 + 𝑦)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
9 | 3, 8 | sylan2 594 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ (𝑇 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 ⊆ wss 3902 ‘cfv 6484 (class class class)co 7342 Basecbs 17010 +gcplusg 17060 LSSumclsm 19336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-1st 7904 df-2nd 7905 df-lsm 19338 |
This theorem is referenced by: lsmub1x 19348 lsmub2x 19349 lsmelvali 19352 lsmsubm 19355 kercvrlsm 41220 |
Copyright terms: Public domain | W3C validator |