MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsdominel Structured version   Visualization version   GIF version

Theorem onsdominel 9147
Description: An ordinal with more elements of some type is larger. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
onsdominel ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴𝐶) ≺ (𝐵𝐶)) → 𝐴𝐵)

Proof of Theorem onsdominel
StepHypRef Expression
1 ontri1 6398 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
21ancoms 457 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
3 inex1g 5314 . . . . . . 7 (𝐴 ∈ On → (𝐴𝐶) ∈ V)
4 ssrin 4228 . . . . . . 7 (𝐵𝐴 → (𝐵𝐶) ⊆ (𝐴𝐶))
5 ssdomg 9017 . . . . . . 7 ((𝐴𝐶) ∈ V → ((𝐵𝐶) ⊆ (𝐴𝐶) → (𝐵𝐶) ≼ (𝐴𝐶)))
63, 4, 5syl2im 40 . . . . . 6 (𝐴 ∈ On → (𝐵𝐴 → (𝐵𝐶) ≼ (𝐴𝐶)))
7 domnsym 9120 . . . . . 6 ((𝐵𝐶) ≼ (𝐴𝐶) → ¬ (𝐴𝐶) ≺ (𝐵𝐶))
86, 7syl6 35 . . . . 5 (𝐴 ∈ On → (𝐵𝐴 → ¬ (𝐴𝐶) ≺ (𝐵𝐶)))
98adantr 479 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 → ¬ (𝐴𝐶) ≺ (𝐵𝐶)))
102, 9sylbird 259 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 → ¬ (𝐴𝐶) ≺ (𝐵𝐶)))
1110con4d 115 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐶) ≺ (𝐵𝐶) → 𝐴𝐵))
12113impia 1114 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴𝐶) ≺ (𝐵𝐶)) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084  wcel 2098  Vcvv 3463  cin 3939  wss 3940   class class class wbr 5143  Oncon0 6364  cdom 8958  csdm 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6367  df-on 6368  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963
This theorem is referenced by:  fin23lem27  10349
  Copyright terms: Public domain W3C validator