MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsdominel Structured version   Visualization version   GIF version

Theorem onsdominel 8266
Description: An ordinal with more elements of some type is larger. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
onsdominel ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴𝐶) ≺ (𝐵𝐶)) → 𝐴𝐵)

Proof of Theorem onsdominel
StepHypRef Expression
1 ontri1 5901 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
21ancoms 455 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
3 inex1g 4936 . . . . . . 7 (𝐴 ∈ On → (𝐴𝐶) ∈ V)
4 ssrin 3987 . . . . . . 7 (𝐵𝐴 → (𝐵𝐶) ⊆ (𝐴𝐶))
5 ssdomg 8156 . . . . . . 7 ((𝐴𝐶) ∈ V → ((𝐵𝐶) ⊆ (𝐴𝐶) → (𝐵𝐶) ≼ (𝐴𝐶)))
63, 4, 5syl2im 40 . . . . . 6 (𝐴 ∈ On → (𝐵𝐴 → (𝐵𝐶) ≼ (𝐴𝐶)))
7 domnsym 8243 . . . . . 6 ((𝐵𝐶) ≼ (𝐴𝐶) → ¬ (𝐴𝐶) ≺ (𝐵𝐶))
86, 7syl6 35 . . . . 5 (𝐴 ∈ On → (𝐵𝐴 → ¬ (𝐴𝐶) ≺ (𝐵𝐶)))
98adantr 466 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 → ¬ (𝐴𝐶) ≺ (𝐵𝐶)))
102, 9sylbird 250 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 → ¬ (𝐴𝐶) ≺ (𝐵𝐶)))
1110con4d 115 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐶) ≺ (𝐵𝐶) → 𝐴𝐵))
12113impia 1109 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴𝐶) ≺ (𝐵𝐶)) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071  wcel 2145  Vcvv 3351  cin 3723  wss 3724   class class class wbr 4787  Oncon0 5867  cdom 8108  csdm 8109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3589  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-ord 5870  df-on 5871  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113
This theorem is referenced by:  fin23lem27  9353
  Copyright terms: Public domain W3C validator