MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsdominel Structured version   Visualization version   GIF version

Theorem onsdominel 9039
Description: An ordinal with more elements of some type is larger. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
onsdominel ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴𝐶) ≺ (𝐵𝐶)) → 𝐴𝐵)

Proof of Theorem onsdominel
StepHypRef Expression
1 ontri1 6340 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
21ancoms 458 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
3 inex1g 5255 . . . . . . 7 (𝐴 ∈ On → (𝐴𝐶) ∈ V)
4 ssrin 4189 . . . . . . 7 (𝐵𝐴 → (𝐵𝐶) ⊆ (𝐴𝐶))
5 ssdomg 8922 . . . . . . 7 ((𝐴𝐶) ∈ V → ((𝐵𝐶) ⊆ (𝐴𝐶) → (𝐵𝐶) ≼ (𝐴𝐶)))
63, 4, 5syl2im 40 . . . . . 6 (𝐴 ∈ On → (𝐵𝐴 → (𝐵𝐶) ≼ (𝐴𝐶)))
7 domnsym 9016 . . . . . 6 ((𝐵𝐶) ≼ (𝐴𝐶) → ¬ (𝐴𝐶) ≺ (𝐵𝐶))
86, 7syl6 35 . . . . 5 (𝐴 ∈ On → (𝐵𝐴 → ¬ (𝐴𝐶) ≺ (𝐵𝐶)))
98adantr 480 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 → ¬ (𝐴𝐶) ≺ (𝐵𝐶)))
102, 9sylbird 260 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 → ¬ (𝐴𝐶) ≺ (𝐵𝐶)))
1110con4d 115 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐶) ≺ (𝐵𝐶) → 𝐴𝐵))
12113impia 1117 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴𝐶) ≺ (𝐵𝐶)) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2111  Vcvv 3436  cin 3896  wss 3897   class class class wbr 5089  Oncon0 6306  cdom 8867  csdm 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872
This theorem is referenced by:  fin23lem27  10219
  Copyright terms: Public domain W3C validator