Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onsdominel | Structured version Visualization version GIF version |
Description: An ordinal with more elements of some type is larger. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
onsdominel | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶)) → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ontri1 6285 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
2 | 1 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) |
3 | inex1g 5238 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝐴 ∩ 𝐶) ∈ V) | |
4 | ssrin 4164 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∩ 𝐶) ⊆ (𝐴 ∩ 𝐶)) | |
5 | ssdomg 8741 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝐶) ∈ V → ((𝐵 ∩ 𝐶) ⊆ (𝐴 ∩ 𝐶) → (𝐵 ∩ 𝐶) ≼ (𝐴 ∩ 𝐶))) | |
6 | 3, 4, 5 | syl2im 40 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐵 ⊆ 𝐴 → (𝐵 ∩ 𝐶) ≼ (𝐴 ∩ 𝐶))) |
7 | domnsym 8839 | . . . . . 6 ⊢ ((𝐵 ∩ 𝐶) ≼ (𝐴 ∩ 𝐶) → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶)) | |
8 | 6, 7 | syl6 35 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐵 ⊆ 𝐴 → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶))) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶))) |
10 | 2, 9 | sylbird 259 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ 𝐵 → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶))) |
11 | 10 | con4d 115 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐵)) |
12 | 11 | 3impia 1115 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶)) → 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 Oncon0 6251 ≼ cdom 8689 ≺ csdm 8690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 |
This theorem is referenced by: fin23lem27 10015 |
Copyright terms: Public domain | W3C validator |