![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsdominel | Structured version Visualization version GIF version |
Description: An ordinal with more elements of some type is larger. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
onsdominel | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶)) → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ontri1 6057 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
2 | 1 | ancoms 451 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) |
3 | inex1g 5074 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝐴 ∩ 𝐶) ∈ V) | |
4 | ssrin 4092 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∩ 𝐶) ⊆ (𝐴 ∩ 𝐶)) | |
5 | ssdomg 8344 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝐶) ∈ V → ((𝐵 ∩ 𝐶) ⊆ (𝐴 ∩ 𝐶) → (𝐵 ∩ 𝐶) ≼ (𝐴 ∩ 𝐶))) | |
6 | 3, 4, 5 | syl2im 40 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐵 ⊆ 𝐴 → (𝐵 ∩ 𝐶) ≼ (𝐴 ∩ 𝐶))) |
7 | domnsym 8431 | . . . . . 6 ⊢ ((𝐵 ∩ 𝐶) ≼ (𝐴 ∩ 𝐶) → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶)) | |
8 | 6, 7 | syl6 35 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐵 ⊆ 𝐴 → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶))) |
9 | 8 | adantr 473 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶))) |
10 | 2, 9 | sylbird 252 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ 𝐵 → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶))) |
11 | 10 | con4d 115 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐵)) |
12 | 11 | 3impia 1097 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶)) → 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 ∈ wcel 2048 Vcvv 3409 ∩ cin 3824 ⊆ wss 3825 class class class wbr 4923 Oncon0 6023 ≼ cdom 8296 ≺ csdm 8297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-ord 6026 df-on 6027 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 |
This theorem is referenced by: fin23lem27 9540 |
Copyright terms: Public domain | W3C validator |