![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsdominel | Structured version Visualization version GIF version |
Description: An ordinal with more elements of some type is larger. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
Ref | Expression |
---|---|
onsdominel | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶)) → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ontri1 6426 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
2 | 1 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) |
3 | inex1g 5328 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝐴 ∩ 𝐶) ∈ V) | |
4 | ssrin 4253 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∩ 𝐶) ⊆ (𝐴 ∩ 𝐶)) | |
5 | ssdomg 9048 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝐶) ∈ V → ((𝐵 ∩ 𝐶) ⊆ (𝐴 ∩ 𝐶) → (𝐵 ∩ 𝐶) ≼ (𝐴 ∩ 𝐶))) | |
6 | 3, 4, 5 | syl2im 40 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝐵 ⊆ 𝐴 → (𝐵 ∩ 𝐶) ≼ (𝐴 ∩ 𝐶))) |
7 | domnsym 9147 | . . . . . 6 ⊢ ((𝐵 ∩ 𝐶) ≼ (𝐴 ∩ 𝐶) → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶)) | |
8 | 6, 7 | syl6 35 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐵 ⊆ 𝐴 → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶))) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶))) |
10 | 2, 9 | sylbird 260 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ 𝐵 → ¬ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶))) |
11 | 10 | con4d 115 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐵)) |
12 | 11 | 3impia 1118 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐴 ∩ 𝐶) ≺ (𝐵 ∩ 𝐶)) → 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 Vcvv 3481 ∩ cin 3965 ⊆ wss 3966 class class class wbr 5151 Oncon0 6392 ≼ cdom 8991 ≺ csdm 8992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-ord 6395 df-on 6396 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 |
This theorem is referenced by: fin23lem27 10375 |
Copyright terms: Public domain | W3C validator |