MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcau Structured version   Visualization version   GIF version

Theorem odcau 18993
Description: Cauchy's theorem for the order of an element in a group. A finite group whose order divides a prime 𝑃 contains an element of order 𝑃. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
odcau.x 𝑋 = (Base‘𝐺)
odcau.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odcau (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃)
Distinct variable groups:   𝑔,𝐺   𝑃,𝑔   𝑔,𝑋
Allowed substitution hint:   𝑂(𝑔)

Proof of Theorem odcau
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 odcau.x . . 3 𝑋 = (Base‘𝐺)
2 simpl1 1193 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝐺 ∈ Grp)
3 simpl2 1194 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑋 ∈ Fin)
4 simpl3 1195 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∈ ℙ)
5 1nn0 12106 . . . 4 1 ∈ ℕ0
65a1i 11 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 1 ∈ ℕ0)
7 prmnn 16231 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
84, 7syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∈ ℕ)
98nncnd 11846 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∈ ℂ)
109exp1d 13711 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → (𝑃↑1) = 𝑃)
11 simpr 488 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∥ (♯‘𝑋))
1210, 11eqbrtrd 5075 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → (𝑃↑1) ∥ (♯‘𝑋))
131, 2, 3, 4, 6, 12sylow1 18992 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ∃𝑠 ∈ (SubGrp‘𝐺)(♯‘𝑠) = (𝑃↑1))
1410eqeq2d 2748 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ((♯‘𝑠) = (𝑃↑1) ↔ (♯‘𝑠) = 𝑃))
1514adantr 484 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((♯‘𝑠) = (𝑃↑1) ↔ (♯‘𝑠) = 𝑃))
16 fvex 6730 . . . . . . . . . . . 12 (0g𝐺) ∈ V
17 hashsng 13936 . . . . . . . . . . . 12 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
1816, 17ax-mp 5 . . . . . . . . . . 11 (♯‘{(0g𝐺)}) = 1
19 simprr 773 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (♯‘𝑠) = 𝑃)
204adantr 484 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑃 ∈ ℙ)
21 prmuz2 16253 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2220, 21syl 17 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑃 ∈ (ℤ‘2))
2319, 22eqeltrd 2838 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (♯‘𝑠) ∈ (ℤ‘2))
24 eluz2gt1 12516 . . . . . . . . . . . 12 ((♯‘𝑠) ∈ (ℤ‘2) → 1 < (♯‘𝑠))
2523, 24syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 1 < (♯‘𝑠))
2618, 25eqbrtrid 5088 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (♯‘{(0g𝐺)}) < (♯‘𝑠))
27 snfi 8721 . . . . . . . . . . 11 {(0g𝐺)} ∈ Fin
283adantr 484 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑋 ∈ Fin)
291subgss 18544 . . . . . . . . . . . . 13 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠𝑋)
3029ad2antrl 728 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑠𝑋)
3128, 30ssfid 8898 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑠 ∈ Fin)
32 hashsdom 13948 . . . . . . . . . . 11 (({(0g𝐺)} ∈ Fin ∧ 𝑠 ∈ Fin) → ((♯‘{(0g𝐺)}) < (♯‘𝑠) ↔ {(0g𝐺)} ≺ 𝑠))
3327, 31, 32sylancr 590 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ((♯‘{(0g𝐺)}) < (♯‘𝑠) ↔ {(0g𝐺)} ≺ 𝑠))
3426, 33mpbid 235 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → {(0g𝐺)} ≺ 𝑠)
35 sdomdif 8794 . . . . . . . . 9 ({(0g𝐺)} ≺ 𝑠 → (𝑠 ∖ {(0g𝐺)}) ≠ ∅)
3634, 35syl 17 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (𝑠 ∖ {(0g𝐺)}) ≠ ∅)
37 n0 4261 . . . . . . . 8 ((𝑠 ∖ {(0g𝐺)}) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g𝐺)}))
3836, 37sylib 221 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g𝐺)}))
39 eldifsn 4700 . . . . . . . . 9 (𝑔 ∈ (𝑠 ∖ {(0g𝐺)}) ↔ (𝑔𝑠𝑔 ≠ (0g𝐺)))
4030adantrr 717 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑠𝑋)
41 simprrl 781 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑔𝑠)
4240, 41sseldd 3902 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑔𝑋)
43 simprrr 782 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑔 ≠ (0g𝐺))
44 simprll 779 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑠 ∈ (SubGrp‘𝐺))
4531adantrr 717 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑠 ∈ Fin)
46 odcau.o . . . . . . . . . . . . . . . . . . 19 𝑂 = (od‘𝐺)
4746odsubdvds 18960 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ Fin ∧ 𝑔𝑠) → (𝑂𝑔) ∥ (♯‘𝑠))
4844, 45, 41, 47syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) ∥ (♯‘𝑠))
49 simprlr 780 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (♯‘𝑠) = 𝑃)
5048, 49breqtrd 5079 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) ∥ 𝑃)
512adantr 484 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝐺 ∈ Grp)
523adantr 484 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑋 ∈ Fin)
531, 46odcl2 18956 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑔𝑋) → (𝑂𝑔) ∈ ℕ)
5451, 52, 42, 53syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) ∈ ℕ)
55 dvdsprime 16244 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ (𝑂𝑔) ∈ ℕ) → ((𝑂𝑔) ∥ 𝑃 ↔ ((𝑂𝑔) = 𝑃 ∨ (𝑂𝑔) = 1)))
564, 54, 55syl2an2r 685 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → ((𝑂𝑔) ∥ 𝑃 ↔ ((𝑂𝑔) = 𝑃 ∨ (𝑂𝑔) = 1)))
5750, 56mpbid 235 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → ((𝑂𝑔) = 𝑃 ∨ (𝑂𝑔) = 1))
5857ord 864 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (¬ (𝑂𝑔) = 𝑃 → (𝑂𝑔) = 1))
59 eqid 2737 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
6046, 59, 1odeq1 18951 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑔𝑋) → ((𝑂𝑔) = 1 ↔ 𝑔 = (0g𝐺)))
612, 42, 60syl2an2r 685 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → ((𝑂𝑔) = 1 ↔ 𝑔 = (0g𝐺)))
6258, 61sylibd 242 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (¬ (𝑂𝑔) = 𝑃𝑔 = (0g𝐺)))
6362necon1ad 2957 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑔 ≠ (0g𝐺) → (𝑂𝑔) = 𝑃))
6443, 63mpd 15 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) = 𝑃)
6542, 64jca 515 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑔𝑋 ∧ (𝑂𝑔) = 𝑃))
6665expr 460 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ((𝑔𝑠𝑔 ≠ (0g𝐺)) → (𝑔𝑋 ∧ (𝑂𝑔) = 𝑃)))
6739, 66syl5bi 245 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (𝑔 ∈ (𝑠 ∖ {(0g𝐺)}) → (𝑔𝑋 ∧ (𝑂𝑔) = 𝑃)))
6867eximdv 1925 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g𝐺)}) → ∃𝑔(𝑔𝑋 ∧ (𝑂𝑔) = 𝑃)))
6938, 68mpd 15 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ∃𝑔(𝑔𝑋 ∧ (𝑂𝑔) = 𝑃))
70 df-rex 3067 . . . . . 6 (∃𝑔𝑋 (𝑂𝑔) = 𝑃 ↔ ∃𝑔(𝑔𝑋 ∧ (𝑂𝑔) = 𝑃))
7169, 70sylibr 237 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃)
7271expr 460 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((♯‘𝑠) = 𝑃 → ∃𝑔𝑋 (𝑂𝑔) = 𝑃))
7315, 72sylbid 243 . . 3 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((♯‘𝑠) = (𝑃↑1) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃))
7473rexlimdva 3203 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → (∃𝑠 ∈ (SubGrp‘𝐺)(♯‘𝑠) = (𝑃↑1) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃))
7513, 74mpd 15 1 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wex 1787  wcel 2110  wne 2940  wrex 3062  Vcvv 3408  cdif 3863  wss 3866  c0 4237  {csn 4541   class class class wbr 5053  cfv 6380  (class class class)co 7213  csdm 8625  Fincfn 8626  1c1 10730   < clt 10867  cn 11830  2c2 11885  0cn0 12090  cuz 12438  cexp 13635  chash 13896  cdvds 15815  cprime 16228  Basecbs 16760  0gc0g 16944  Grpcgrp 18365  SubGrpcsubg 18537  odcod 18916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-er 8391  df-ec 8393  df-qs 8397  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-dvds 15816  df-gcd 16054  df-prm 16229  df-pc 16390  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-eqg 18542  df-ga 18684  df-od 18920
This theorem is referenced by:  pgpfi  18994  ablfacrplem  19452
  Copyright terms: Public domain W3C validator