MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcau Structured version   Visualization version   GIF version

Theorem odcau 19391
Description: Cauchy's theorem for the order of an element in a group. A finite group whose order divides a prime 𝑃 contains an element of order 𝑃. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
odcau.x 𝑋 = (Base‘𝐺)
odcau.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odcau (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃)
Distinct variable groups:   𝑔,𝐺   𝑃,𝑔   𝑔,𝑋
Allowed substitution hint:   𝑂(𝑔)

Proof of Theorem odcau
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 odcau.x . . 3 𝑋 = (Base‘𝐺)
2 simpl1 1192 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝐺 ∈ Grp)
3 simpl2 1193 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑋 ∈ Fin)
4 simpl3 1194 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∈ ℙ)
5 1nn0 12434 . . . 4 1 ∈ ℕ0
65a1i 11 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 1 ∈ ℕ0)
7 prmnn 16555 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
84, 7syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∈ ℕ)
98nncnd 12174 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∈ ℂ)
109exp1d 14052 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → (𝑃↑1) = 𝑃)
11 simpr 486 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∥ (♯‘𝑋))
1210, 11eqbrtrd 5128 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → (𝑃↑1) ∥ (♯‘𝑋))
131, 2, 3, 4, 6, 12sylow1 19390 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ∃𝑠 ∈ (SubGrp‘𝐺)(♯‘𝑠) = (𝑃↑1))
1410eqeq2d 2744 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ((♯‘𝑠) = (𝑃↑1) ↔ (♯‘𝑠) = 𝑃))
1514adantr 482 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((♯‘𝑠) = (𝑃↑1) ↔ (♯‘𝑠) = 𝑃))
16 fvex 6856 . . . . . . . . . . . 12 (0g𝐺) ∈ V
17 hashsng 14275 . . . . . . . . . . . 12 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
1816, 17ax-mp 5 . . . . . . . . . . 11 (♯‘{(0g𝐺)}) = 1
19 simprr 772 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (♯‘𝑠) = 𝑃)
204adantr 482 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑃 ∈ ℙ)
21 prmuz2 16577 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2220, 21syl 17 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑃 ∈ (ℤ‘2))
2319, 22eqeltrd 2834 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (♯‘𝑠) ∈ (ℤ‘2))
24 eluz2gt1 12850 . . . . . . . . . . . 12 ((♯‘𝑠) ∈ (ℤ‘2) → 1 < (♯‘𝑠))
2523, 24syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 1 < (♯‘𝑠))
2618, 25eqbrtrid 5141 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (♯‘{(0g𝐺)}) < (♯‘𝑠))
27 snfi 8991 . . . . . . . . . . 11 {(0g𝐺)} ∈ Fin
283adantr 482 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑋 ∈ Fin)
291subgss 18934 . . . . . . . . . . . . 13 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠𝑋)
3029ad2antrl 727 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑠𝑋)
3128, 30ssfid 9214 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑠 ∈ Fin)
32 hashsdom 14287 . . . . . . . . . . 11 (({(0g𝐺)} ∈ Fin ∧ 𝑠 ∈ Fin) → ((♯‘{(0g𝐺)}) < (♯‘𝑠) ↔ {(0g𝐺)} ≺ 𝑠))
3327, 31, 32sylancr 588 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ((♯‘{(0g𝐺)}) < (♯‘𝑠) ↔ {(0g𝐺)} ≺ 𝑠))
3426, 33mpbid 231 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → {(0g𝐺)} ≺ 𝑠)
35 sdomdif 9072 . . . . . . . . 9 ({(0g𝐺)} ≺ 𝑠 → (𝑠 ∖ {(0g𝐺)}) ≠ ∅)
3634, 35syl 17 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (𝑠 ∖ {(0g𝐺)}) ≠ ∅)
37 n0 4307 . . . . . . . 8 ((𝑠 ∖ {(0g𝐺)}) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g𝐺)}))
3836, 37sylib 217 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g𝐺)}))
39 eldifsn 4748 . . . . . . . . 9 (𝑔 ∈ (𝑠 ∖ {(0g𝐺)}) ↔ (𝑔𝑠𝑔 ≠ (0g𝐺)))
4030adantrr 716 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑠𝑋)
41 simprrl 780 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑔𝑠)
4240, 41sseldd 3946 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑔𝑋)
43 simprrr 781 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑔 ≠ (0g𝐺))
44 simprll 778 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑠 ∈ (SubGrp‘𝐺))
4531adantrr 716 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑠 ∈ Fin)
46 odcau.o . . . . . . . . . . . . . . . . . . 19 𝑂 = (od‘𝐺)
4746odsubdvds 19358 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ Fin ∧ 𝑔𝑠) → (𝑂𝑔) ∥ (♯‘𝑠))
4844, 45, 41, 47syl3anc 1372 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) ∥ (♯‘𝑠))
49 simprlr 779 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (♯‘𝑠) = 𝑃)
5048, 49breqtrd 5132 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) ∥ 𝑃)
512adantr 482 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝐺 ∈ Grp)
523adantr 482 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑋 ∈ Fin)
531, 46odcl2 19352 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑔𝑋) → (𝑂𝑔) ∈ ℕ)
5451, 52, 42, 53syl3anc 1372 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) ∈ ℕ)
55 dvdsprime 16568 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ (𝑂𝑔) ∈ ℕ) → ((𝑂𝑔) ∥ 𝑃 ↔ ((𝑂𝑔) = 𝑃 ∨ (𝑂𝑔) = 1)))
564, 54, 55syl2an2r 684 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → ((𝑂𝑔) ∥ 𝑃 ↔ ((𝑂𝑔) = 𝑃 ∨ (𝑂𝑔) = 1)))
5750, 56mpbid 231 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → ((𝑂𝑔) = 𝑃 ∨ (𝑂𝑔) = 1))
5857ord 863 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (¬ (𝑂𝑔) = 𝑃 → (𝑂𝑔) = 1))
59 eqid 2733 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
6046, 59, 1odeq1 19347 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑔𝑋) → ((𝑂𝑔) = 1 ↔ 𝑔 = (0g𝐺)))
612, 42, 60syl2an2r 684 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → ((𝑂𝑔) = 1 ↔ 𝑔 = (0g𝐺)))
6258, 61sylibd 238 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (¬ (𝑂𝑔) = 𝑃𝑔 = (0g𝐺)))
6362necon1ad 2957 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑔 ≠ (0g𝐺) → (𝑂𝑔) = 𝑃))
6443, 63mpd 15 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) = 𝑃)
6542, 64jca 513 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑔𝑋 ∧ (𝑂𝑔) = 𝑃))
6665expr 458 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ((𝑔𝑠𝑔 ≠ (0g𝐺)) → (𝑔𝑋 ∧ (𝑂𝑔) = 𝑃)))
6739, 66biimtrid 241 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (𝑔 ∈ (𝑠 ∖ {(0g𝐺)}) → (𝑔𝑋 ∧ (𝑂𝑔) = 𝑃)))
6867eximdv 1921 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g𝐺)}) → ∃𝑔(𝑔𝑋 ∧ (𝑂𝑔) = 𝑃)))
6938, 68mpd 15 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ∃𝑔(𝑔𝑋 ∧ (𝑂𝑔) = 𝑃))
70 df-rex 3071 . . . . . 6 (∃𝑔𝑋 (𝑂𝑔) = 𝑃 ↔ ∃𝑔(𝑔𝑋 ∧ (𝑂𝑔) = 𝑃))
7169, 70sylibr 233 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃)
7271expr 458 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((♯‘𝑠) = 𝑃 → ∃𝑔𝑋 (𝑂𝑔) = 𝑃))
7315, 72sylbid 239 . . 3 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((♯‘𝑠) = (𝑃↑1) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃))
7473rexlimdva 3149 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → (∃𝑠 ∈ (SubGrp‘𝐺)(♯‘𝑠) = (𝑃↑1) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃))
7513, 74mpd 15 1 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wne 2940  wrex 3070  Vcvv 3444  cdif 3908  wss 3911  c0 4283  {csn 4587   class class class wbr 5106  cfv 6497  (class class class)co 7358  csdm 8885  Fincfn 8886  1c1 11057   < clt 11194  cn 12158  2c2 12213  0cn0 12418  cuz 12768  cexp 13973  chash 14236  cdvds 16141  cprime 16552  Basecbs 17088  0gc0g 17326  Grpcgrp 18753  SubGrpcsubg 18927  odcod 19311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-disj 5072  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-oadd 8417  df-omul 8418  df-er 8651  df-ec 8653  df-qs 8657  df-map 8770  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-inf 9384  df-oi 9451  df-dju 9842  df-card 9880  df-acn 9883  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-n0 12419  df-xnn0 12491  df-z 12505  df-uz 12769  df-q 12879  df-rp 12921  df-fz 13431  df-fzo 13574  df-fl 13703  df-mod 13781  df-seq 13913  df-exp 13974  df-fac 14180  df-bc 14209  df-hash 14237  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-clim 15376  df-sum 15577  df-dvds 16142  df-gcd 16380  df-prm 16553  df-pc 16714  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-0g 17328  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-submnd 18607  df-grp 18756  df-minusg 18757  df-sbg 18758  df-mulg 18878  df-subg 18930  df-eqg 18932  df-ga 19075  df-od 19315
This theorem is referenced by:  pgpfi  19392  ablfacrplem  19849
  Copyright terms: Public domain W3C validator