Step | Hyp | Ref
| Expression |
1 | | odcau.x |
. . 3
⊢ 𝑋 = (Base‘𝐺) |
2 | | simpl1 1190 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝐺 ∈ Grp) |
3 | | simpl2 1191 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑋 ∈ Fin) |
4 | | simpl3 1192 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∈ ℙ) |
5 | | 1nn0 12249 |
. . . 4
⊢ 1 ∈
ℕ0 |
6 | 5 | a1i 11 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 1 ∈
ℕ0) |
7 | | prmnn 16379 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
8 | 4, 7 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∈ ℕ) |
9 | 8 | nncnd 11989 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∈ ℂ) |
10 | 9 | exp1d 13859 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → (𝑃↑1) = 𝑃) |
11 | | simpr 485 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∥ (♯‘𝑋)) |
12 | 10, 11 | eqbrtrd 5096 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → (𝑃↑1) ∥ (♯‘𝑋)) |
13 | 1, 2, 3, 4, 6, 12 | sylow1 19208 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ∃𝑠 ∈ (SubGrp‘𝐺)(♯‘𝑠) = (𝑃↑1)) |
14 | 10 | eqeq2d 2749 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ((♯‘𝑠) = (𝑃↑1) ↔ (♯‘𝑠) = 𝑃)) |
15 | 14 | adantr 481 |
. . . 4
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((♯‘𝑠) = (𝑃↑1) ↔ (♯‘𝑠) = 𝑃)) |
16 | | fvex 6787 |
. . . . . . . . . . . 12
⊢
(0g‘𝐺) ∈ V |
17 | | hashsng 14084 |
. . . . . . . . . . . 12
⊢
((0g‘𝐺) ∈ V →
(♯‘{(0g‘𝐺)}) = 1) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(♯‘{(0g‘𝐺)}) = 1 |
19 | | simprr 770 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (♯‘𝑠) = 𝑃) |
20 | 4 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑃 ∈ ℙ) |
21 | | prmuz2 16401 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑃 ∈
(ℤ≥‘2)) |
23 | 19, 22 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (♯‘𝑠) ∈
(ℤ≥‘2)) |
24 | | eluz2gt1 12660 |
. . . . . . . . . . . 12
⊢
((♯‘𝑠)
∈ (ℤ≥‘2) → 1 < (♯‘𝑠)) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 1 < (♯‘𝑠)) |
26 | 18, 25 | eqbrtrid 5109 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) →
(♯‘{(0g‘𝐺)}) < (♯‘𝑠)) |
27 | | snfi 8834 |
. . . . . . . . . . 11
⊢
{(0g‘𝐺)} ∈ Fin |
28 | 3 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑋 ∈ Fin) |
29 | 1 | subgss 18756 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ (SubGrp‘𝐺) → 𝑠 ⊆ 𝑋) |
30 | 29 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑠 ⊆ 𝑋) |
31 | 28, 30 | ssfid 9042 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑠 ∈ Fin) |
32 | | hashsdom 14096 |
. . . . . . . . . . 11
⊢
(({(0g‘𝐺)} ∈ Fin ∧ 𝑠 ∈ Fin) →
((♯‘{(0g‘𝐺)}) < (♯‘𝑠) ↔ {(0g‘𝐺)} ≺ 𝑠)) |
33 | 27, 31, 32 | sylancr 587 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) →
((♯‘{(0g‘𝐺)}) < (♯‘𝑠) ↔ {(0g‘𝐺)} ≺ 𝑠)) |
34 | 26, 33 | mpbid 231 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → {(0g‘𝐺)} ≺ 𝑠) |
35 | | sdomdif 8912 |
. . . . . . . . 9
⊢
({(0g‘𝐺)} ≺ 𝑠 → (𝑠 ∖ {(0g‘𝐺)}) ≠
∅) |
36 | 34, 35 | syl 17 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (𝑠 ∖ {(0g‘𝐺)}) ≠
∅) |
37 | | n0 4280 |
. . . . . . . 8
⊢ ((𝑠 ∖
{(0g‘𝐺)})
≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g‘𝐺)})) |
38 | 36, 37 | sylib 217 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g‘𝐺)})) |
39 | | eldifsn 4720 |
. . . . . . . . 9
⊢ (𝑔 ∈ (𝑠 ∖ {(0g‘𝐺)}) ↔ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺))) |
40 | 30 | adantrr 714 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → 𝑠 ⊆ 𝑋) |
41 | | simprrl 778 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → 𝑔 ∈ 𝑠) |
42 | 40, 41 | sseldd 3922 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → 𝑔 ∈ 𝑋) |
43 | | simprrr 779 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → 𝑔 ≠ (0g‘𝐺)) |
44 | | simprll 776 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → 𝑠 ∈ (SubGrp‘𝐺)) |
45 | 31 | adantrr 714 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → 𝑠 ∈ Fin) |
46 | | odcau.o |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑂 = (od‘𝐺) |
47 | 46 | odsubdvds 19176 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ Fin ∧ 𝑔 ∈ 𝑠) → (𝑂‘𝑔) ∥ (♯‘𝑠)) |
48 | 44, 45, 41, 47 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → (𝑂‘𝑔) ∥ (♯‘𝑠)) |
49 | | simprlr 777 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → (♯‘𝑠) = 𝑃) |
50 | 48, 49 | breqtrd 5100 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → (𝑂‘𝑔) ∥ 𝑃) |
51 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → 𝐺 ∈ Grp) |
52 | 3 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → 𝑋 ∈ Fin) |
53 | 1, 46 | odcl2 19172 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑔 ∈ 𝑋) → (𝑂‘𝑔) ∈ ℕ) |
54 | 51, 52, 42, 53 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → (𝑂‘𝑔) ∈ ℕ) |
55 | | dvdsprime 16392 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ ℙ ∧ (𝑂‘𝑔) ∈ ℕ) → ((𝑂‘𝑔) ∥ 𝑃 ↔ ((𝑂‘𝑔) = 𝑃 ∨ (𝑂‘𝑔) = 1))) |
56 | 4, 54, 55 | syl2an2r 682 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → ((𝑂‘𝑔) ∥ 𝑃 ↔ ((𝑂‘𝑔) = 𝑃 ∨ (𝑂‘𝑔) = 1))) |
57 | 50, 56 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → ((𝑂‘𝑔) = 𝑃 ∨ (𝑂‘𝑔) = 1)) |
58 | 57 | ord 861 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → (¬ (𝑂‘𝑔) = 𝑃 → (𝑂‘𝑔) = 1)) |
59 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(0g‘𝐺) = (0g‘𝐺) |
60 | 46, 59, 1 | odeq1 19167 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧ 𝑔 ∈ 𝑋) → ((𝑂‘𝑔) = 1 ↔ 𝑔 = (0g‘𝐺))) |
61 | 2, 42, 60 | syl2an2r 682 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → ((𝑂‘𝑔) = 1 ↔ 𝑔 = (0g‘𝐺))) |
62 | 58, 61 | sylibd 238 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → (¬ (𝑂‘𝑔) = 𝑃 → 𝑔 = (0g‘𝐺))) |
63 | 62 | necon1ad 2960 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → (𝑔 ≠ (0g‘𝐺) → (𝑂‘𝑔) = 𝑃)) |
64 | 43, 63 | mpd 15 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → (𝑂‘𝑔) = 𝑃) |
65 | 42, 64 | jca 512 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)))) → (𝑔 ∈ 𝑋 ∧ (𝑂‘𝑔) = 𝑃)) |
66 | 65 | expr 457 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ((𝑔 ∈ 𝑠 ∧ 𝑔 ≠ (0g‘𝐺)) → (𝑔 ∈ 𝑋 ∧ (𝑂‘𝑔) = 𝑃))) |
67 | 39, 66 | syl5bi 241 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (𝑔 ∈ (𝑠 ∖ {(0g‘𝐺)}) → (𝑔 ∈ 𝑋 ∧ (𝑂‘𝑔) = 𝑃))) |
68 | 67 | eximdv 1920 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g‘𝐺)}) → ∃𝑔(𝑔 ∈ 𝑋 ∧ (𝑂‘𝑔) = 𝑃))) |
69 | 38, 68 | mpd 15 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ∃𝑔(𝑔 ∈ 𝑋 ∧ (𝑂‘𝑔) = 𝑃)) |
70 | | df-rex 3070 |
. . . . . 6
⊢
(∃𝑔 ∈
𝑋 (𝑂‘𝑔) = 𝑃 ↔ ∃𝑔(𝑔 ∈ 𝑋 ∧ (𝑂‘𝑔) = 𝑃)) |
71 | 69, 70 | sylibr 233 |
. . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ∃𝑔 ∈ 𝑋 (𝑂‘𝑔) = 𝑃) |
72 | 71 | expr 457 |
. . . 4
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((♯‘𝑠) = 𝑃 → ∃𝑔 ∈ 𝑋 (𝑂‘𝑔) = 𝑃)) |
73 | 15, 72 | sylbid 239 |
. . 3
⊢ ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((♯‘𝑠) = (𝑃↑1) → ∃𝑔 ∈ 𝑋 (𝑂‘𝑔) = 𝑃)) |
74 | 73 | rexlimdva 3213 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → (∃𝑠 ∈ (SubGrp‘𝐺)(♯‘𝑠) = (𝑃↑1) → ∃𝑔 ∈ 𝑋 (𝑂‘𝑔) = 𝑃)) |
75 | 13, 74 | mpd 15 |
1
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ∃𝑔 ∈ 𝑋 (𝑂‘𝑔) = 𝑃) |