MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcau Structured version   Visualization version   GIF version

Theorem odcau 19646
Description: Cauchy's theorem for the order of an element in a group. A finite group whose order divides a prime 𝑃 contains an element of order 𝑃. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
odcau.x 𝑋 = (Base‘𝐺)
odcau.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odcau (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃)
Distinct variable groups:   𝑔,𝐺   𝑃,𝑔   𝑔,𝑋
Allowed substitution hint:   𝑂(𝑔)

Proof of Theorem odcau
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 odcau.x . . 3 𝑋 = (Base‘𝐺)
2 simpl1 1191 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝐺 ∈ Grp)
3 simpl2 1192 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑋 ∈ Fin)
4 simpl3 1193 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∈ ℙ)
5 1nn0 12569 . . . 4 1 ∈ ℕ0
65a1i 11 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 1 ∈ ℕ0)
7 prmnn 16721 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
84, 7syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∈ ℕ)
98nncnd 12309 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∈ ℂ)
109exp1d 14191 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → (𝑃↑1) = 𝑃)
11 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → 𝑃 ∥ (♯‘𝑋))
1210, 11eqbrtrd 5188 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → (𝑃↑1) ∥ (♯‘𝑋))
131, 2, 3, 4, 6, 12sylow1 19645 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ∃𝑠 ∈ (SubGrp‘𝐺)(♯‘𝑠) = (𝑃↑1))
1410eqeq2d 2751 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ((♯‘𝑠) = (𝑃↑1) ↔ (♯‘𝑠) = 𝑃))
1514adantr 480 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((♯‘𝑠) = (𝑃↑1) ↔ (♯‘𝑠) = 𝑃))
16 fvex 6933 . . . . . . . . . . . 12 (0g𝐺) ∈ V
17 hashsng 14418 . . . . . . . . . . . 12 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
1816, 17ax-mp 5 . . . . . . . . . . 11 (♯‘{(0g𝐺)}) = 1
19 simprr 772 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (♯‘𝑠) = 𝑃)
204adantr 480 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑃 ∈ ℙ)
21 prmuz2 16743 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2220, 21syl 17 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑃 ∈ (ℤ‘2))
2319, 22eqeltrd 2844 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (♯‘𝑠) ∈ (ℤ‘2))
24 eluz2gt1 12985 . . . . . . . . . . . 12 ((♯‘𝑠) ∈ (ℤ‘2) → 1 < (♯‘𝑠))
2523, 24syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 1 < (♯‘𝑠))
2618, 25eqbrtrid 5201 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (♯‘{(0g𝐺)}) < (♯‘𝑠))
27 snfi 9109 . . . . . . . . . . 11 {(0g𝐺)} ∈ Fin
283adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑋 ∈ Fin)
291subgss 19167 . . . . . . . . . . . . 13 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠𝑋)
3029ad2antrl 727 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑠𝑋)
3128, 30ssfid 9329 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → 𝑠 ∈ Fin)
32 hashsdom 14430 . . . . . . . . . . 11 (({(0g𝐺)} ∈ Fin ∧ 𝑠 ∈ Fin) → ((♯‘{(0g𝐺)}) < (♯‘𝑠) ↔ {(0g𝐺)} ≺ 𝑠))
3327, 31, 32sylancr 586 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ((♯‘{(0g𝐺)}) < (♯‘𝑠) ↔ {(0g𝐺)} ≺ 𝑠))
3426, 33mpbid 232 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → {(0g𝐺)} ≺ 𝑠)
35 sdomdif 9191 . . . . . . . . 9 ({(0g𝐺)} ≺ 𝑠 → (𝑠 ∖ {(0g𝐺)}) ≠ ∅)
3634, 35syl 17 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (𝑠 ∖ {(0g𝐺)}) ≠ ∅)
37 n0 4376 . . . . . . . 8 ((𝑠 ∖ {(0g𝐺)}) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g𝐺)}))
3836, 37sylib 218 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g𝐺)}))
39 eldifsn 4811 . . . . . . . . 9 (𝑔 ∈ (𝑠 ∖ {(0g𝐺)}) ↔ (𝑔𝑠𝑔 ≠ (0g𝐺)))
4030adantrr 716 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑠𝑋)
41 simprrl 780 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑔𝑠)
4240, 41sseldd 4009 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑔𝑋)
43 simprrr 781 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑔 ≠ (0g𝐺))
44 simprll 778 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑠 ∈ (SubGrp‘𝐺))
4531adantrr 716 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑠 ∈ Fin)
46 odcau.o . . . . . . . . . . . . . . . . . . 19 𝑂 = (od‘𝐺)
4746odsubdvds 19613 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ Fin ∧ 𝑔𝑠) → (𝑂𝑔) ∥ (♯‘𝑠))
4844, 45, 41, 47syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) ∥ (♯‘𝑠))
49 simprlr 779 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (♯‘𝑠) = 𝑃)
5048, 49breqtrd 5192 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) ∥ 𝑃)
512adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝐺 ∈ Grp)
523adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑋 ∈ Fin)
531, 46odcl2 19607 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑔𝑋) → (𝑂𝑔) ∈ ℕ)
5451, 52, 42, 53syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) ∈ ℕ)
55 dvdsprime 16734 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ (𝑂𝑔) ∈ ℕ) → ((𝑂𝑔) ∥ 𝑃 ↔ ((𝑂𝑔) = 𝑃 ∨ (𝑂𝑔) = 1)))
564, 54, 55syl2an2r 684 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → ((𝑂𝑔) ∥ 𝑃 ↔ ((𝑂𝑔) = 𝑃 ∨ (𝑂𝑔) = 1)))
5750, 56mpbid 232 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → ((𝑂𝑔) = 𝑃 ∨ (𝑂𝑔) = 1))
5857ord 863 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (¬ (𝑂𝑔) = 𝑃 → (𝑂𝑔) = 1))
59 eqid 2740 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
6046, 59, 1odeq1 19602 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑔𝑋) → ((𝑂𝑔) = 1 ↔ 𝑔 = (0g𝐺)))
612, 42, 60syl2an2r 684 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → ((𝑂𝑔) = 1 ↔ 𝑔 = (0g𝐺)))
6258, 61sylibd 239 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (¬ (𝑂𝑔) = 𝑃𝑔 = (0g𝐺)))
6362necon1ad 2963 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑔 ≠ (0g𝐺) → (𝑂𝑔) = 𝑃))
6443, 63mpd 15 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) = 𝑃)
6542, 64jca 511 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑔𝑋 ∧ (𝑂𝑔) = 𝑃))
6665expr 456 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ((𝑔𝑠𝑔 ≠ (0g𝐺)) → (𝑔𝑋 ∧ (𝑂𝑔) = 𝑃)))
6739, 66biimtrid 242 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (𝑔 ∈ (𝑠 ∖ {(0g𝐺)}) → (𝑔𝑋 ∧ (𝑂𝑔) = 𝑃)))
6867eximdv 1916 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → (∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g𝐺)}) → ∃𝑔(𝑔𝑋 ∧ (𝑂𝑔) = 𝑃)))
6938, 68mpd 15 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ∃𝑔(𝑔𝑋 ∧ (𝑂𝑔) = 𝑃))
70 df-rex 3077 . . . . . 6 (∃𝑔𝑋 (𝑂𝑔) = 𝑃 ↔ ∃𝑔(𝑔𝑋 ∧ (𝑂𝑔) = 𝑃))
7169, 70sylibr 234 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (♯‘𝑠) = 𝑃)) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃)
7271expr 456 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((♯‘𝑠) = 𝑃 → ∃𝑔𝑋 (𝑂𝑔) = 𝑃))
7315, 72sylbid 240 . . 3 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((♯‘𝑠) = (𝑃↑1) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃))
7473rexlimdva 3161 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → (∃𝑠 ∈ (SubGrp‘𝐺)(♯‘𝑠) = (𝑃↑1) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃))
7513, 74mpd 15 1 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (♯‘𝑋)) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  cdif 3973  wss 3976  c0 4352  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  csdm 9002  Fincfn 9003  1c1 11185   < clt 11324  cn 12293  2c2 12348  0cn0 12553  cuz 12903  cexp 14112  chash 14379  cdvds 16302  cprime 16718  Basecbs 17258  0gc0g 17499  Grpcgrp 18973  SubGrpcsubg 19160  odcod 19566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-eqg 19165  df-ga 19330  df-od 19570
This theorem is referenced by:  pgpfi  19647  ablfacrplem  20109
  Copyright terms: Public domain W3C validator