MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomel Structured version   Visualization version   GIF version

Theorem sdomel 9149
Description: For ordinals, strict dominance implies membership. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
sdomel ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))

Proof of Theorem sdomel
StepHypRef Expression
1 ssdomg 9021 . . . . 5 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
21adantl 481 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴𝐵𝐴))
3 ontri1 6403 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
4 domtriord 9148 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
52, 3, 43imtr3d 293 . . 3 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (¬ 𝐴𝐵 → ¬ 𝐴𝐵))
65con4d 115 . 2 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐴𝐵𝐴𝐵))
76ancoms 458 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2099  wss 3947   class class class wbr 5148  Oncon0 6369  cdom 8962  csdm 8963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6372  df-on 6373  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967
This theorem is referenced by:  findcard3OLD  9311  harval2  10021  alephsuc2  10104  inawinalem  10713
  Copyright terms: Public domain W3C validator