![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomel | Structured version Visualization version GIF version |
Description: For ordinals, strict dominance implies membership. (Contributed by Mario Carneiro, 13-Jan-2013.) |
Ref | Expression |
---|---|
sdomel | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≺ 𝐵 → 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdomg 8992 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
2 | 1 | adantl 482 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) |
3 | ontri1 6395 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
4 | domtriord 9119 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵)) | |
5 | 2, 3, 4 | 3imtr3d 292 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (¬ 𝐴 ∈ 𝐵 → ¬ 𝐴 ≺ 𝐵)) |
6 | 5 | con4d 115 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ≺ 𝐵 → 𝐴 ∈ 𝐵)) |
7 | 6 | ancoms 459 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≺ 𝐵 → 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3947 class class class wbr 5147 Oncon0 6361 ≼ cdom 8933 ≺ csdm 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 |
This theorem is referenced by: findcard3OLD 9282 harval2 9988 alephsuc2 10071 inawinalem 10680 |
Copyright terms: Public domain | W3C validator |