MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomel Structured version   Visualization version   GIF version

Theorem sdomel 9138
Description: For ordinals, strict dominance implies membership. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
sdomel ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))

Proof of Theorem sdomel
StepHypRef Expression
1 ssdomg 9014 . . . . 5 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
21adantl 481 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴𝐵𝐴))
3 ontri1 6386 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
4 domtriord 9137 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
52, 3, 43imtr3d 293 . . 3 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (¬ 𝐴𝐵 → ¬ 𝐴𝐵))
65con4d 115 . 2 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐴𝐵𝐴𝐵))
76ancoms 458 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wss 3926   class class class wbr 5119  Oncon0 6352  cdom 8957  csdm 8958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962
This theorem is referenced by:  findcard3OLD  9291  harval2  10011  alephsuc2  10094  inawinalem  10703
  Copyright terms: Public domain W3C validator