Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensdomtr | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity and strict dominance. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensdomtr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 8849 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | domsdomtr 8986 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | |
3 | 1, 2 | sylan 581 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 class class class wbr 5100 ≈ cen 8810 ≼ cdom 8811 ≺ csdm 8812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-opab 5163 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 |
This theorem is referenced by: sdomen1 8995 sucxpdom 9129 f1finf1oOLD 9146 findcard3OLD 9160 isfinite2 9175 pm54.43 9867 infxpenlem 9879 alephnbtwn2 9938 alephordi 9940 alephsucdom 9945 pwsdompw 10070 infunsdom1 10079 cflim2 10129 fin23lem27 10194 cfpwsdom 10450 inawinalem 10555 inar1 10641 tskcard 10647 tskuni 10649 rpnnen 16040 resdomq 16057 aleph1re 16058 aleph1irr 16059 1nprm 16486 ensucne0OLD 41511 |
Copyright terms: Public domain | W3C validator |