MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensdomtr Structured version   Visualization version   GIF version

Theorem ensdomtr 9132
Description: Transitivity of equinumerosity and strict dominance. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensdomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem ensdomtr
StepHypRef Expression
1 endom 8998 . 2 (𝐴𝐵𝐴𝐵)
2 domsdomtr 9131 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan 580 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   class class class wbr 5124  cen 8961  cdom 8962  csdm 8963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967
This theorem is referenced by:  sdomen1  9140  sucxpdom  9268  f1finf1oOLD  9283  findcard3OLD  9296  isfinite2  9311  pm54.43  10020  infxpenlem  10032  alephnbtwn2  10091  alephordi  10093  alephsucdom  10098  pwsdompw  10222  infunsdom1  10231  cflim2  10282  fin23lem27  10347  cfpwsdom  10603  inawinalem  10708  inar1  10794  tskcard  10800  tskuni  10802  rpnnen  16250  resdomq  16267  aleph1re  16268  aleph1irr  16269  1nprm  16703  ensucne0OLD  43529
  Copyright terms: Public domain W3C validator