![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensdomtr | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity and strict dominance. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensdomtr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 8270 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | domsdomtr 8385 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | |
3 | 1, 2 | sylan 575 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 class class class wbr 4888 ≈ cen 8240 ≼ cdom 8241 ≺ csdm 8242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 |
This theorem is referenced by: sdomen1 8394 sucxpdom 8459 f1finf1o 8477 findcard3 8493 isfinite2 8508 pm54.43 9161 infxpenlem 9171 alephnbtwn2 9230 alephordi 9232 alephsucdom 9237 pwsdompw 9363 infunsdom1 9372 cflim2 9422 fin23lem27 9487 cfpwsdom 9743 inawinalem 9848 inar1 9934 tskcard 9940 tskuni 9942 rpnnen 15369 resdomq 15386 aleph1re 15387 aleph1irr 15388 1nprm 15808 |
Copyright terms: Public domain | W3C validator |