MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensdomtr Structured version   Visualization version   GIF version

Theorem ensdomtr 9179
Description: Transitivity of equinumerosity and strict dominance. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensdomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem ensdomtr
StepHypRef Expression
1 endom 9039 . 2 (𝐴𝐵𝐴𝐵)
2 domsdomtr 9178 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan 579 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   class class class wbr 5166  cen 9000  cdom 9001  csdm 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006
This theorem is referenced by:  sdomen1  9187  sucxpdom  9318  f1finf1oOLD  9334  findcard3OLD  9347  isfinite2  9362  pm54.43  10070  infxpenlem  10082  alephnbtwn2  10141  alephordi  10143  alephsucdom  10148  pwsdompw  10272  infunsdom1  10281  cflim2  10332  fin23lem27  10397  cfpwsdom  10653  inawinalem  10758  inar1  10844  tskcard  10850  tskuni  10852  rpnnen  16275  resdomq  16292  aleph1re  16293  aleph1irr  16294  1nprm  16726  ensucne0OLD  43492
  Copyright terms: Public domain W3C validator