Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensdomtr | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity and strict dominance. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensdomtr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 8800 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | domsdomtr 8937 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | |
3 | 1, 2 | sylan 581 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 class class class wbr 5081 ≈ cen 8761 ≼ cdom 8762 ≺ csdm 8763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 |
This theorem is referenced by: sdomen1 8946 sucxpdom 9076 f1finf1o 9090 findcard3 9101 isfinite2 9116 pm54.43 9803 infxpenlem 9815 alephnbtwn2 9874 alephordi 9876 alephsucdom 9881 pwsdompw 10006 infunsdom1 10015 cflim2 10065 fin23lem27 10130 cfpwsdom 10386 inawinalem 10491 inar1 10577 tskcard 10583 tskuni 10585 rpnnen 15981 resdomq 15998 aleph1re 15999 aleph1irr 16000 1nprm 16429 ensucne0OLD 41175 |
Copyright terms: Public domain | W3C validator |