Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensdomtr | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity and strict dominance. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensdomtr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 8738 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | domsdomtr 8864 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5078 ≈ cen 8704 ≼ cdom 8705 ≺ csdm 8706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 |
This theorem is referenced by: sdomen1 8873 sucxpdom 8993 f1finf1o 9007 findcard3 9018 isfinite2 9033 pm54.43 9743 infxpenlem 9753 alephnbtwn2 9812 alephordi 9814 alephsucdom 9819 pwsdompw 9944 infunsdom1 9953 cflim2 10003 fin23lem27 10068 cfpwsdom 10324 inawinalem 10429 inar1 10515 tskcard 10521 tskuni 10523 rpnnen 15917 resdomq 15934 aleph1re 15935 aleph1irr 15936 1nprm 16365 ensucne0OLD 41099 |
Copyright terms: Public domain | W3C validator |