MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pwne Structured version   Visualization version   GIF version

Theorem 2pwne 9151
Description: No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008.)
Assertion
Ref Expression
2pwne (𝐴𝑉 → 𝒫 𝒫 𝐴𝐴)

Proof of Theorem 2pwne
StepHypRef Expression
1 sdomirr 9132 . . 3 ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴
2 canth2g 9149 . . . . 5 (𝐴𝑉𝐴 ≺ 𝒫 𝐴)
3 pwexg 5372 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
4 canth2g 9149 . . . . . 6 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
53, 4syl 17 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
6 sdomtr 9133 . . . . 5 ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝐴 ≺ 𝒫 𝒫 𝐴)
72, 5, 6syl2anc 583 . . . 4 (𝐴𝑉𝐴 ≺ 𝒫 𝒫 𝐴)
8 breq1 5145 . . . 4 (𝒫 𝒫 𝐴 = 𝐴 → (𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴𝐴 ≺ 𝒫 𝒫 𝐴))
97, 8syl5ibrcom 246 . . 3 (𝐴𝑉 → (𝒫 𝒫 𝐴 = 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
101, 9mtoi 198 . 2 (𝐴𝑉 → ¬ 𝒫 𝒫 𝐴 = 𝐴)
1110neqned 2943 1 (𝐴𝑉 → 𝒫 𝒫 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wne 2936  Vcvv 3470  𝒫 cpw 4598   class class class wbr 5142  csdm 8956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator