![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2pwne | Structured version Visualization version GIF version |
Description: No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008.) |
Ref | Expression |
---|---|
2pwne | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝒫 𝐴 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomirr 9110 | . . 3 ⊢ ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 | |
2 | canth2g 9127 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) | |
3 | pwexg 5375 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
4 | canth2g 9127 | . . . . . 6 ⊢ (𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) |
6 | sdomtr 9111 | . . . . 5 ⊢ ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝐴 ≺ 𝒫 𝒫 𝐴) | |
7 | 2, 5, 6 | syl2anc 584 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝒫 𝐴) |
8 | breq1 5150 | . . . 4 ⊢ (𝒫 𝒫 𝐴 = 𝐴 → (𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 ↔ 𝐴 ≺ 𝒫 𝒫 𝐴)) | |
9 | 7, 8 | syl5ibrcom 246 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝒫 𝐴 = 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)) |
10 | 1, 9 | mtoi 198 | . 2 ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝒫 𝐴 = 𝐴) |
11 | 10 | neqned 2947 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝒫 𝐴 ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 𝒫 cpw 4601 class class class wbr 5147 ≺ csdm 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |