MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pwne Structured version   Visualization version   GIF version

Theorem 2pwne 9172
Description: No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008.)
Assertion
Ref Expression
2pwne (𝐴𝑉 → 𝒫 𝒫 𝐴𝐴)

Proof of Theorem 2pwne
StepHypRef Expression
1 sdomirr 9153 . . 3 ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴
2 canth2g 9170 . . . . 5 (𝐴𝑉𝐴 ≺ 𝒫 𝐴)
3 pwexg 5384 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
4 canth2g 9170 . . . . . 6 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
53, 4syl 17 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
6 sdomtr 9154 . . . . 5 ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝐴 ≺ 𝒫 𝒫 𝐴)
72, 5, 6syl2anc 584 . . . 4 (𝐴𝑉𝐴 ≺ 𝒫 𝒫 𝐴)
8 breq1 5151 . . . 4 (𝒫 𝒫 𝐴 = 𝐴 → (𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴𝐴 ≺ 𝒫 𝒫 𝐴))
97, 8syl5ibrcom 247 . . 3 (𝐴𝑉 → (𝒫 𝒫 𝐴 = 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
101, 9mtoi 199 . 2 (𝐴𝑉 → ¬ 𝒫 𝒫 𝐴 = 𝐴)
1110neqned 2945 1 (𝐴𝑉 → 𝒫 𝒫 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  𝒫 cpw 4605   class class class wbr 5148  csdm 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator