| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2pwne | Structured version Visualization version GIF version | ||
| Description: No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008.) |
| Ref | Expression |
|---|---|
| 2pwne | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝒫 𝐴 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomirr 9083 | . . 3 ⊢ ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 | |
| 2 | canth2g 9100 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) | |
| 3 | pwexg 5335 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 4 | canth2g 9100 | . . . . . 6 ⊢ (𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) |
| 6 | sdomtr 9084 | . . . . 5 ⊢ ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝐴 ≺ 𝒫 𝒫 𝐴) | |
| 7 | 2, 5, 6 | syl2anc 584 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝒫 𝐴) |
| 8 | breq1 5112 | . . . 4 ⊢ (𝒫 𝒫 𝐴 = 𝐴 → (𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 ↔ 𝐴 ≺ 𝒫 𝒫 𝐴)) | |
| 9 | 7, 8 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝒫 𝐴 = 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)) |
| 10 | 1, 9 | mtoi 199 | . 2 ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝒫 𝐴 = 𝐴) |
| 11 | 10 | neqned 2933 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝒫 𝐴 ≠ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 𝒫 cpw 4565 class class class wbr 5109 ≺ csdm 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |