![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2pwne | Structured version Visualization version GIF version |
Description: No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008.) |
Ref | Expression |
---|---|
2pwne | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝒫 𝐴 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomirr 9132 | . . 3 ⊢ ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 | |
2 | canth2g 9149 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴) | |
3 | pwexg 5372 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
4 | canth2g 9149 | . . . . . 6 ⊢ (𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) |
6 | sdomtr 9133 | . . . . 5 ⊢ ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝐴 ≺ 𝒫 𝒫 𝐴) | |
7 | 2, 5, 6 | syl2anc 583 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝒫 𝐴) |
8 | breq1 5145 | . . . 4 ⊢ (𝒫 𝒫 𝐴 = 𝐴 → (𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 ↔ 𝐴 ≺ 𝒫 𝒫 𝐴)) | |
9 | 7, 8 | syl5ibrcom 246 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝒫 𝐴 = 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)) |
10 | 1, 9 | mtoi 198 | . 2 ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝒫 𝐴 = 𝐴) |
11 | 10 | neqned 2943 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝒫 𝐴 ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 Vcvv 3470 𝒫 cpw 4598 class class class wbr 5142 ≺ csdm 8956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |