![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnsval | Structured version Visualization version GIF version |
Description: The sign value. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
Ref | Expression |
---|---|
sgnsval.b | ⊢ 𝐵 = (Base‘𝑅) |
sgnsval.0 | ⊢ 0 = (0g‘𝑅) |
sgnsval.l | ⊢ < = (lt‘𝑅) |
sgnsval.s | ⊢ 𝑆 = (sgns‘𝑅) |
Ref | Expression |
---|---|
sgnsval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑆‘𝑋) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgnsval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | sgnsval.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
3 | sgnsval.l | . . . 4 ⊢ < = (lt‘𝑅) | |
4 | sgnsval.s | . . . 4 ⊢ 𝑆 = (sgns‘𝑅) | |
5 | 1, 2, 3, 4 | sgnsv 33153 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑆 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
7 | eqeq1 2744 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0 )) | |
8 | breq2 5170 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( 0 < 𝑥 ↔ 0 < 𝑋)) | |
9 | 8 | ifbid 4571 | . . . 4 ⊢ (𝑥 = 𝑋 → if( 0 < 𝑥, 1, -1) = if( 0 < 𝑋, 1, -1)) |
10 | 7, 9 | ifbieq2d 4574 | . . 3 ⊢ (𝑥 = 𝑋 → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1))) |
11 | 10 | adantl 481 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 = 𝑋) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1))) |
12 | simpr 484 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
13 | c0ex 11284 | . . . 4 ⊢ 0 ∈ V | |
14 | 13 | a1i 11 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 = 0 ) → 0 ∈ V) |
15 | 1ex 11286 | . . . . 5 ⊢ 1 ∈ V | |
16 | 15 | a1i 11 | . . . 4 ⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑋 = 0 ) ∧ 0 < 𝑋) → 1 ∈ V) |
17 | negex 11534 | . . . . 5 ⊢ -1 ∈ V | |
18 | 17 | a1i 11 | . . . 4 ⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑋 = 0 ) ∧ ¬ 0 < 𝑋) → -1 ∈ V) |
19 | 16, 18 | ifclda 4583 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑋 = 0 ) → if( 0 < 𝑋, 1, -1) ∈ V) |
20 | 14, 19 | ifclda 4583 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)) ∈ V) |
21 | 6, 11, 12, 20 | fvmptd 7036 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑆‘𝑋) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 0cc0 11184 1c1 11185 -cneg 11521 Basecbs 17258 0gc0g 17499 ltcplt 18378 sgnscsgns 33151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-neg 11523 df-sgns 33152 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |