Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsval Structured version   Visualization version   GIF version

Theorem sgnsval 31330
Description: The sign value. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b 𝐵 = (Base‘𝑅)
sgnsval.0 0 = (0g𝑅)
sgnsval.l < = (lt‘𝑅)
sgnsval.s 𝑆 = (sgns𝑅)
Assertion
Ref Expression
sgnsval ((𝑅𝑉𝑋𝐵) → (𝑆𝑋) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))

Proof of Theorem sgnsval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sgnsval.b . . . 4 𝐵 = (Base‘𝑅)
2 sgnsval.0 . . . 4 0 = (0g𝑅)
3 sgnsval.l . . . 4 < = (lt‘𝑅)
4 sgnsval.s . . . 4 𝑆 = (sgns𝑅)
51, 2, 3, 4sgnsv 31329 . . 3 (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
65adantr 480 . 2 ((𝑅𝑉𝑋𝐵) → 𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
7 eqeq1 2742 . . . 4 (𝑥 = 𝑋 → (𝑥 = 0𝑋 = 0 ))
8 breq2 5074 . . . . 5 (𝑥 = 𝑋 → ( 0 < 𝑥0 < 𝑋))
98ifbid 4479 . . . 4 (𝑥 = 𝑋 → if( 0 < 𝑥, 1, -1) = if( 0 < 𝑋, 1, -1))
107, 9ifbieq2d 4482 . . 3 (𝑥 = 𝑋 → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))
1110adantl 481 . 2 (((𝑅𝑉𝑋𝐵) ∧ 𝑥 = 𝑋) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))
12 simpr 484 . 2 ((𝑅𝑉𝑋𝐵) → 𝑋𝐵)
13 c0ex 10900 . . . 4 0 ∈ V
1413a1i 11 . . 3 (((𝑅𝑉𝑋𝐵) ∧ 𝑋 = 0 ) → 0 ∈ V)
15 1ex 10902 . . . . 5 1 ∈ V
1615a1i 11 . . . 4 ((((𝑅𝑉𝑋𝐵) ∧ ¬ 𝑋 = 0 ) ∧ 0 < 𝑋) → 1 ∈ V)
17 negex 11149 . . . . 5 -1 ∈ V
1817a1i 11 . . . 4 ((((𝑅𝑉𝑋𝐵) ∧ ¬ 𝑋 = 0 ) ∧ ¬ 0 < 𝑋) → -1 ∈ V)
1916, 18ifclda 4491 . . 3 (((𝑅𝑉𝑋𝐵) ∧ ¬ 𝑋 = 0 ) → if( 0 < 𝑋, 1, -1) ∈ V)
2014, 19ifclda 4491 . 2 ((𝑅𝑉𝑋𝐵) → if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)) ∈ V)
216, 11, 12, 20fvmptd 6864 1 ((𝑅𝑉𝑋𝐵) → (𝑆𝑋) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  ifcif 4456   class class class wbr 5070  cmpt 5153  cfv 6418  0cc0 10802  1c1 10803  -cneg 11136  Basecbs 16840  0gc0g 17067  ltcplt 17941  sgnscsgns 31327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-mulcl 10864  ax-i2m1 10870
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-neg 11138  df-sgns 31328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator