Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsval Structured version   Visualization version   GIF version

Theorem sgnsval 30294
Description: The sign value. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b 𝐵 = (Base‘𝑅)
sgnsval.0 0 = (0g𝑅)
sgnsval.l < = (lt‘𝑅)
sgnsval.s 𝑆 = (sgns𝑅)
Assertion
Ref Expression
sgnsval ((𝑅𝑉𝑋𝐵) → (𝑆𝑋) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))

Proof of Theorem sgnsval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sgnsval.b . . . 4 𝐵 = (Base‘𝑅)
2 sgnsval.0 . . . 4 0 = (0g𝑅)
3 sgnsval.l . . . 4 < = (lt‘𝑅)
4 sgnsval.s . . . 4 𝑆 = (sgns𝑅)
51, 2, 3, 4sgnsv 30293 . . 3 (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
65adantr 474 . 2 ((𝑅𝑉𝑋𝐵) → 𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
7 eqeq1 2782 . . . 4 (𝑥 = 𝑋 → (𝑥 = 0𝑋 = 0 ))
8 breq2 4892 . . . . 5 (𝑥 = 𝑋 → ( 0 < 𝑥0 < 𝑋))
98ifbid 4329 . . . 4 (𝑥 = 𝑋 → if( 0 < 𝑥, 1, -1) = if( 0 < 𝑋, 1, -1))
107, 9ifbieq2d 4332 . . 3 (𝑥 = 𝑋 → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))
1110adantl 475 . 2 (((𝑅𝑉𝑋𝐵) ∧ 𝑥 = 𝑋) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))
12 simpr 479 . 2 ((𝑅𝑉𝑋𝐵) → 𝑋𝐵)
13 c0ex 10372 . . . 4 0 ∈ V
1413a1i 11 . . 3 (((𝑅𝑉𝑋𝐵) ∧ 𝑋 = 0 ) → 0 ∈ V)
15 1ex 10374 . . . . 5 1 ∈ V
1615a1i 11 . . . 4 ((((𝑅𝑉𝑋𝐵) ∧ ¬ 𝑋 = 0 ) ∧ 0 < 𝑋) → 1 ∈ V)
17 negex 10622 . . . . 5 -1 ∈ V
1817a1i 11 . . . 4 ((((𝑅𝑉𝑋𝐵) ∧ ¬ 𝑋 = 0 ) ∧ ¬ 0 < 𝑋) → -1 ∈ V)
1916, 18ifclda 4341 . . 3 (((𝑅𝑉𝑋𝐵) ∧ ¬ 𝑋 = 0 ) → if( 0 < 𝑋, 1, -1) ∈ V)
2014, 19ifclda 4341 . 2 ((𝑅𝑉𝑋𝐵) → if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)) ∈ V)
216, 11, 12, 20fvmptd 6550 1 ((𝑅𝑉𝑋𝐵) → (𝑆𝑋) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  ifcif 4307   class class class wbr 4888  cmpt 4967  cfv 6137  0cc0 10274  1c1 10275  -cneg 10609  Basecbs 16259  0gc0g 16490  ltcplt 17331  sgnscsgns 30291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pr 5140  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-mulcl 10336  ax-i2m1 10342
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-neg 10611  df-sgns 30292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator