| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnsval | Structured version Visualization version GIF version | ||
| Description: The sign value. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
| Ref | Expression |
|---|---|
| sgnsval.b | ⊢ 𝐵 = (Base‘𝑅) |
| sgnsval.0 | ⊢ 0 = (0g‘𝑅) |
| sgnsval.l | ⊢ < = (lt‘𝑅) |
| sgnsval.s | ⊢ 𝑆 = (sgns‘𝑅) |
| Ref | Expression |
|---|---|
| sgnsval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑆‘𝑋) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgnsval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | sgnsval.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 3 | sgnsval.l | . . . 4 ⊢ < = (lt‘𝑅) | |
| 4 | sgnsval.s | . . . 4 ⊢ 𝑆 = (sgns‘𝑅) | |
| 5 | 1, 2, 3, 4 | sgnsv 33127 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑆 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
| 7 | eqeq1 2735 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0 )) | |
| 8 | breq2 5095 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( 0 < 𝑥 ↔ 0 < 𝑋)) | |
| 9 | 8 | ifbid 4499 | . . . 4 ⊢ (𝑥 = 𝑋 → if( 0 < 𝑥, 1, -1) = if( 0 < 𝑋, 1, -1)) |
| 10 | 7, 9 | ifbieq2d 4502 | . . 3 ⊢ (𝑥 = 𝑋 → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1))) |
| 11 | 10 | adantl 481 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 = 𝑋) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1))) |
| 12 | simpr 484 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 13 | c0ex 11106 | . . . 4 ⊢ 0 ∈ V | |
| 14 | 13 | a1i 11 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ 𝑋 = 0 ) → 0 ∈ V) |
| 15 | 1ex 11108 | . . . . 5 ⊢ 1 ∈ V | |
| 16 | 15 | a1i 11 | . . . 4 ⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑋 = 0 ) ∧ 0 < 𝑋) → 1 ∈ V) |
| 17 | negex 11358 | . . . . 5 ⊢ -1 ∈ V | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑋 = 0 ) ∧ ¬ 0 < 𝑋) → -1 ∈ V) |
| 19 | 16, 18 | ifclda 4511 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑋 = 0 ) → if( 0 < 𝑋, 1, -1) ∈ V) |
| 20 | 14, 19 | ifclda 4511 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)) ∈ V) |
| 21 | 6, 11, 12, 20 | fvmptd 6936 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑆‘𝑋) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ifcif 4475 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 0cc0 11006 1c1 11007 -cneg 11345 Basecbs 17120 0gc0g 17343 ltcplt 18214 sgnscsgns 33125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-i2m1 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-neg 11347 df-sgns 33126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |