Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsval Structured version   Visualization version   GIF version

Theorem sgnsval 30811
 Description: The sign value. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b 𝐵 = (Base‘𝑅)
sgnsval.0 0 = (0g𝑅)
sgnsval.l < = (lt‘𝑅)
sgnsval.s 𝑆 = (sgns𝑅)
Assertion
Ref Expression
sgnsval ((𝑅𝑉𝑋𝐵) → (𝑆𝑋) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))

Proof of Theorem sgnsval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sgnsval.b . . . 4 𝐵 = (Base‘𝑅)
2 sgnsval.0 . . . 4 0 = (0g𝑅)
3 sgnsval.l . . . 4 < = (lt‘𝑅)
4 sgnsval.s . . . 4 𝑆 = (sgns𝑅)
51, 2, 3, 4sgnsv 30810 . . 3 (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
65adantr 484 . 2 ((𝑅𝑉𝑋𝐵) → 𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
7 eqeq1 2825 . . . 4 (𝑥 = 𝑋 → (𝑥 = 0𝑋 = 0 ))
8 breq2 5043 . . . . 5 (𝑥 = 𝑋 → ( 0 < 𝑥0 < 𝑋))
98ifbid 4462 . . . 4 (𝑥 = 𝑋 → if( 0 < 𝑥, 1, -1) = if( 0 < 𝑋, 1, -1))
107, 9ifbieq2d 4465 . . 3 (𝑥 = 𝑋 → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))
1110adantl 485 . 2 (((𝑅𝑉𝑋𝐵) ∧ 𝑥 = 𝑋) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))
12 simpr 488 . 2 ((𝑅𝑉𝑋𝐵) → 𝑋𝐵)
13 c0ex 10612 . . . 4 0 ∈ V
1413a1i 11 . . 3 (((𝑅𝑉𝑋𝐵) ∧ 𝑋 = 0 ) → 0 ∈ V)
15 1ex 10614 . . . . 5 1 ∈ V
1615a1i 11 . . . 4 ((((𝑅𝑉𝑋𝐵) ∧ ¬ 𝑋 = 0 ) ∧ 0 < 𝑋) → 1 ∈ V)
17 negex 10861 . . . . 5 -1 ∈ V
1817a1i 11 . . . 4 ((((𝑅𝑉𝑋𝐵) ∧ ¬ 𝑋 = 0 ) ∧ ¬ 0 < 𝑋) → -1 ∈ V)
1916, 18ifclda 4474 . . 3 (((𝑅𝑉𝑋𝐵) ∧ ¬ 𝑋 = 0 ) → if( 0 < 𝑋, 1, -1) ∈ V)
2014, 19ifclda 4474 . 2 ((𝑅𝑉𝑋𝐵) → if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)) ∈ V)
216, 11, 12, 20fvmptd 6748 1 ((𝑅𝑉𝑋𝐵) → (𝑆𝑋) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  Vcvv 3471  ifcif 4440   class class class wbr 5039   ↦ cmpt 5119  ‘cfv 6328  0cc0 10514  1c1 10515  -cneg 10848  Basecbs 16462  0gc0g 16692  ltcplt 17530  sgnscsgns 30808 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pr 5303  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-mulcl 10576  ax-i2m1 10582 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7133  df-neg 10850  df-sgns 30809 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator