Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnsval Structured version   Visualization version   GIF version

Theorem sgnsval 31005
Description: The sign value. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
sgnsval.b 𝐵 = (Base‘𝑅)
sgnsval.0 0 = (0g𝑅)
sgnsval.l < = (lt‘𝑅)
sgnsval.s 𝑆 = (sgns𝑅)
Assertion
Ref Expression
sgnsval ((𝑅𝑉𝑋𝐵) → (𝑆𝑋) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))

Proof of Theorem sgnsval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sgnsval.b . . . 4 𝐵 = (Base‘𝑅)
2 sgnsval.0 . . . 4 0 = (0g𝑅)
3 sgnsval.l . . . 4 < = (lt‘𝑅)
4 sgnsval.s . . . 4 𝑆 = (sgns𝑅)
51, 2, 3, 4sgnsv 31004 . . 3 (𝑅𝑉𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
65adantr 484 . 2 ((𝑅𝑉𝑋𝐵) → 𝑆 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1))))
7 eqeq1 2742 . . . 4 (𝑥 = 𝑋 → (𝑥 = 0𝑋 = 0 ))
8 breq2 5034 . . . . 5 (𝑥 = 𝑋 → ( 0 < 𝑥0 < 𝑋))
98ifbid 4437 . . . 4 (𝑥 = 𝑋 → if( 0 < 𝑥, 1, -1) = if( 0 < 𝑋, 1, -1))
107, 9ifbieq2d 4440 . . 3 (𝑥 = 𝑋 → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))
1110adantl 485 . 2 (((𝑅𝑉𝑋𝐵) ∧ 𝑥 = 𝑋) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))
12 simpr 488 . 2 ((𝑅𝑉𝑋𝐵) → 𝑋𝐵)
13 c0ex 10713 . . . 4 0 ∈ V
1413a1i 11 . . 3 (((𝑅𝑉𝑋𝐵) ∧ 𝑋 = 0 ) → 0 ∈ V)
15 1ex 10715 . . . . 5 1 ∈ V
1615a1i 11 . . . 4 ((((𝑅𝑉𝑋𝐵) ∧ ¬ 𝑋 = 0 ) ∧ 0 < 𝑋) → 1 ∈ V)
17 negex 10962 . . . . 5 -1 ∈ V
1817a1i 11 . . . 4 ((((𝑅𝑉𝑋𝐵) ∧ ¬ 𝑋 = 0 ) ∧ ¬ 0 < 𝑋) → -1 ∈ V)
1916, 18ifclda 4449 . . 3 (((𝑅𝑉𝑋𝐵) ∧ ¬ 𝑋 = 0 ) → if( 0 < 𝑋, 1, -1) ∈ V)
2014, 19ifclda 4449 . 2 ((𝑅𝑉𝑋𝐵) → if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)) ∈ V)
216, 11, 12, 20fvmptd 6782 1 ((𝑅𝑉𝑋𝐵) → (𝑆𝑋) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2114  Vcvv 3398  ifcif 4414   class class class wbr 5030  cmpt 5110  cfv 6339  0cc0 10615  1c1 10616  -cneg 10949  Basecbs 16586  0gc0g 16816  ltcplt 17667  sgnscsgns 31002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-mulcl 10677  ax-i2m1 10683
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7173  df-neg 10951  df-sgns 31003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator