MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrec Structured version   Visualization version   GIF version

Theorem dvrec 25319
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrec (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dvrec
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 25272 . . . 4 (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ
2 ssidd 3967 . . . . . . 7 (𝐴 ∈ ℂ → ℂ ⊆ ℂ)
3 eldifsn 4747 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
4 divcl 11819 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝐴 / 𝑥) ∈ ℂ)
543expb 1120 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (𝐴 / 𝑥) ∈ ℂ)
63, 5sylan2b 594 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝐴 / 𝑥) ∈ ℂ)
76fmpttd 7063 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)):(ℂ ∖ {0})⟶ℂ)
8 difssd 4092 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ ∖ {0}) ⊆ ℂ)
92, 7, 8dvbss 25265 . . . . . 6 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) ⊆ (ℂ ∖ {0}))
10 simpr 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0}))
11 eqid 2736 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1211cnfldtop 24147 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
1311cnfldhaus 24148 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Haus
14 0cn 11147 . . . . . . . . . . . 12 0 ∈ ℂ
15 unicntop 24149 . . . . . . . . . . . . 13 ℂ = (TopOpen‘ℂfld)
1615sncld 22722 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Haus ∧ 0 ∈ ℂ) → {0} ∈ (Clsd‘(TopOpen‘ℂfld)))
1713, 14, 16mp2an 690 . . . . . . . . . . 11 {0} ∈ (Clsd‘(TopOpen‘ℂfld))
1815cldopn 22382 . . . . . . . . . . 11 ({0} ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld))
1917, 18ax-mp 5 . . . . . . . . . 10 (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld)
20 isopn3i 22433 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) = (ℂ ∖ {0}))
2112, 19, 20mp2an 690 . . . . . . . . 9 ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) = (ℂ ∖ {0})
2210, 21eleqtrrdi 2849 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})))
23 eldifi 4086 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
2423adantl 482 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
2524sqvald 14048 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦↑2) = (𝑦 · 𝑦))
2625oveq2d 7373 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / (𝑦↑2)) = (𝐴 / (𝑦 · 𝑦)))
27 simpl 483 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝐴 ∈ ℂ)
28 eldifsni 4750 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
2928adantl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
3027, 24, 24, 29, 29divdiv1d 11962 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝐴 / 𝑦) / 𝑦) = (𝐴 / (𝑦 · 𝑦)))
3126, 30eqtr4d 2779 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / (𝑦↑2)) = ((𝐴 / 𝑦) / 𝑦))
3231negeqd 11395 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) = -((𝐴 / 𝑦) / 𝑦))
3327, 24, 29divcld 11931 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / 𝑦) ∈ ℂ)
3433, 24, 29divnegd 11944 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -((𝐴 / 𝑦) / 𝑦) = (-(𝐴 / 𝑦) / 𝑦))
3532, 34eqtrd 2776 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) = (-(𝐴 / 𝑦) / 𝑦))
3633negcld 11499 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / 𝑦) ∈ ℂ)
37 eqid 2736 . . . . . . . . . . . . 13 (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧))
3837cdivcncf 24284 . . . . . . . . . . . 12 (-(𝐴 / 𝑦) ∈ ℂ → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ))
3936, 38syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ))
40 oveq2 7365 . . . . . . . . . . 11 (𝑧 = 𝑦 → (-(𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑦))
4139, 10, 40cnmptlimc 25254 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (-(𝐴 / 𝑦) / 𝑦) ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
4235, 41eqeltrd 2838 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
43 cncff 24256 . . . . . . . . . . . 12 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)):(ℂ ∖ {0})⟶ℂ)
4439, 43syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)):(ℂ ∖ {0})⟶ℂ)
4544limcdif 25240 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = (((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) lim 𝑦))
46 eldifi 4086 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) → 𝑧 ∈ (ℂ ∖ {0}))
4746adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ∈ (ℂ ∖ {0}))
4847eldifad 3922 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ∈ ℂ)
4923ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑦 ∈ ℂ)
5048, 49subcld 11512 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧𝑦) ∈ ℂ)
5133adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝐴 / 𝑦) ∈ ℂ)
52 eldifsni 4750 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ≠ 0)
5347, 52syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ≠ 0)
5451, 48, 53divcld 11931 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝐴 / 𝑦) / 𝑧) ∈ ℂ)
55 mulneg12 11593 . . . . . . . . . . . . . . . . 17 (((𝑧𝑦) ∈ ℂ ∧ ((𝐴 / 𝑦) / 𝑧) ∈ ℂ) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
5650, 54, 55syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
5749, 48, 54subdird 11612 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
5848, 49negsubdi2d 11528 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -(𝑧𝑦) = (𝑦𝑧))
5958oveq1d 7372 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)))
60 oveq2 7365 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (𝐴 / 𝑥) = (𝐴 / 𝑧))
61 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))
62 ovex 7390 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 / 𝑧) ∈ V
6360, 61, 62fvmpt 6948 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝐴 / 𝑧))
6447, 63syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝐴 / 𝑧))
65 simpll 765 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝐴 ∈ ℂ)
6628ad2antlr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑦 ≠ 0)
6765, 49, 66divcan2d 11933 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑦 · (𝐴 / 𝑦)) = 𝐴)
6867oveq1d 7372 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝐴 / 𝑧))
6949, 51, 48, 53divassd 11966 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
7064, 68, 693eqtr2d 2782 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
71 oveq2 7365 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (𝐴 / 𝑥) = (𝐴 / 𝑦))
72 ovex 7390 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 / 𝑦) ∈ V
7371, 61, 72fvmpt 6948 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝐴 / 𝑦))
7473ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝐴 / 𝑦))
7551, 48, 53divcan2d 11933 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧 · ((𝐴 / 𝑦) / 𝑧)) = (𝐴 / 𝑦))
7674, 75eqtr4d 2779 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝑧 · ((𝐴 / 𝑦) / 𝑧)))
7770, 76oveq12d 7375 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
7857, 59, 773eqtr4d 2786 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)))
7951, 48, 53divnegd 11944 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -((𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑧))
8079oveq2d 7373 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
8156, 78, 803eqtr3d 2784 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
8281oveq1d 7372 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)))
8351negcld 11499 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -(𝐴 / 𝑦) ∈ ℂ)
8483, 48, 53divcld 11931 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝐴 / 𝑦) / 𝑧) ∈ ℂ)
85 eldifsni 4750 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) → 𝑧𝑦)
8685adantl 482 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧𝑦)
8748, 49, 86subne0d 11521 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧𝑦) ≠ 0)
8884, 50, 87divcan3d 11936 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
8982, 88eqtrd 2776 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
9089mpteq2dva 5205 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧)))
91 difss 4091 . . . . . . . . . . . . 13 ((ℂ ∖ {0}) ∖ {𝑦}) ⊆ (ℂ ∖ {0})
92 resmpt 5991 . . . . . . . . . . . . 13 (((ℂ ∖ {0}) ∖ {𝑦}) ⊆ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧)))
9391, 92ax-mp 5 . . . . . . . . . . . 12 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧))
9490, 93eqtr4di 2794 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})))
9594oveq1d 7372 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦) = (((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) lim 𝑦))
9645, 95eqtr4d 2779 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
9742, 96eleqtrd 2840 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
9811cnfldtopon 24146 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
9998toponrestid 22270 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
100 eqid 2736 . . . . . . . . 9 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)))
101 ssidd 3967 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ℂ ⊆ ℂ)
1027adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)):(ℂ ∖ {0})⟶ℂ)
103 difssd 4092 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (ℂ ∖ {0}) ⊆ ℂ)
10499, 11, 100, 101, 102, 103eldv 25262 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) ↔ (𝑦 ∈ ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) ∧ -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))))
10522, 97, 104mpbir2and 711 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)))
106 vex 3449 . . . . . . . 8 𝑦 ∈ V
107 negex 11399 . . . . . . . 8 -(𝐴 / (𝑦↑2)) ∈ V
108106, 107breldm 5864 . . . . . . 7 (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
109105, 108syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
1109, 109eqelssd 3965 . . . . 5 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (ℂ ∖ {0}))
111110feq2d 6654 . . . 4 (𝐴 ∈ ℂ → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ ↔ (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):(ℂ ∖ {0})⟶ℂ))
1121, 111mpbii 232 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):(ℂ ∖ {0})⟶ℂ)
113112ffnd 6669 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) Fn (ℂ ∖ {0}))
114 negex 11399 . . . 4 -(𝐴 / (𝑥↑2)) ∈ V
115114rgenw 3068 . . 3 𝑥 ∈ (ℂ ∖ {0})-(𝐴 / (𝑥↑2)) ∈ V
116 eqid 2736 . . . 4 (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))
117116fnmpt 6641 . . 3 (∀𝑥 ∈ (ℂ ∖ {0})-(𝐴 / (𝑥↑2)) ∈ V → (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) Fn (ℂ ∖ {0}))
118115, 117mp1i 13 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) Fn (ℂ ∖ {0}))
119 ffun 6671 . . . . 5 ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ → Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
1201, 119mp1i 13 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
121 funbrfv 6893 . . . 4 (Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) → (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2))))
122120, 105, 121sylc 65 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2)))
123 oveq1 7364 . . . . . . 7 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
124123oveq2d 7373 . . . . . 6 (𝑥 = 𝑦 → (𝐴 / (𝑥↑2)) = (𝐴 / (𝑦↑2)))
125124negeqd 11395 . . . . 5 (𝑥 = 𝑦 → -(𝐴 / (𝑥↑2)) = -(𝐴 / (𝑦↑2)))
126125, 116, 107fvmpt 6948 . . . 4 (𝑦 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦) = -(𝐴 / (𝑦↑2)))
127126adantl 482 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦) = -(𝐴 / (𝑦↑2)))
128122, 127eqtr4d 2779 . 2 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦))
129113, 118, 128eqfnfvd 6985 1 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  Vcvv 3445  cdif 3907  wss 3910  {csn 4586   class class class wbr 5105  cmpt 5188  dom cdm 5633  cres 5635  Fun wfun 6490   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051   · cmul 11056  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  cexp 13967  TopOpenctopn 17303  fldccnfld 20796  Topctop 22242  Clsdccld 22367  intcnt 22368  Hauscha 22659  cnccncf 24239   lim climc 25226   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-t1 22665  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  dvrecg  25337  dvexp3  25342  dvtan  36128
  Copyright terms: Public domain W3C validator