MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrec Structured version   Visualization version   GIF version

Theorem dvrec 24558
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrec (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dvrec
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 24511 . . . 4 (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ
2 ssidd 3938 . . . . . . 7 (𝐴 ∈ ℂ → ℂ ⊆ ℂ)
3 eldifsn 4680 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
4 divcl 11293 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝐴 / 𝑥) ∈ ℂ)
543expb 1117 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (𝐴 / 𝑥) ∈ ℂ)
63, 5sylan2b 596 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝐴 / 𝑥) ∈ ℂ)
76fmpttd 6856 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)):(ℂ ∖ {0})⟶ℂ)
8 difssd 4060 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ ∖ {0}) ⊆ ℂ)
92, 7, 8dvbss 24504 . . . . . 6 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) ⊆ (ℂ ∖ {0}))
10 simpr 488 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0}))
11 eqid 2798 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1211cnfldtop 23389 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
1311cnfldhaus 23390 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Haus
14 0cn 10622 . . . . . . . . . . . 12 0 ∈ ℂ
15 unicntop 23391 . . . . . . . . . . . . 13 ℂ = (TopOpen‘ℂfld)
1615sncld 21976 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Haus ∧ 0 ∈ ℂ) → {0} ∈ (Clsd‘(TopOpen‘ℂfld)))
1713, 14, 16mp2an 691 . . . . . . . . . . 11 {0} ∈ (Clsd‘(TopOpen‘ℂfld))
1815cldopn 21636 . . . . . . . . . . 11 ({0} ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld))
1917, 18ax-mp 5 . . . . . . . . . 10 (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld)
20 isopn3i 21687 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) = (ℂ ∖ {0}))
2112, 19, 20mp2an 691 . . . . . . . . 9 ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) = (ℂ ∖ {0})
2210, 21eleqtrrdi 2901 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})))
23 eldifi 4054 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
2423adantl 485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
2524sqvald 13503 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦↑2) = (𝑦 · 𝑦))
2625oveq2d 7151 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / (𝑦↑2)) = (𝐴 / (𝑦 · 𝑦)))
27 simpl 486 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝐴 ∈ ℂ)
28 eldifsni 4683 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
2928adantl 485 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
3027, 24, 24, 29, 29divdiv1d 11436 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝐴 / 𝑦) / 𝑦) = (𝐴 / (𝑦 · 𝑦)))
3126, 30eqtr4d 2836 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / (𝑦↑2)) = ((𝐴 / 𝑦) / 𝑦))
3231negeqd 10869 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) = -((𝐴 / 𝑦) / 𝑦))
3327, 24, 29divcld 11405 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / 𝑦) ∈ ℂ)
3433, 24, 29divnegd 11418 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -((𝐴 / 𝑦) / 𝑦) = (-(𝐴 / 𝑦) / 𝑦))
3532, 34eqtrd 2833 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) = (-(𝐴 / 𝑦) / 𝑦))
3633negcld 10973 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / 𝑦) ∈ ℂ)
37 eqid 2798 . . . . . . . . . . . . 13 (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧))
3837cdivcncf 23526 . . . . . . . . . . . 12 (-(𝐴 / 𝑦) ∈ ℂ → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ))
3936, 38syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ))
40 oveq2 7143 . . . . . . . . . . 11 (𝑧 = 𝑦 → (-(𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑦))
4139, 10, 40cnmptlimc 24493 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (-(𝐴 / 𝑦) / 𝑦) ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
4235, 41eqeltrd 2890 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
43 cncff 23498 . . . . . . . . . . . 12 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)):(ℂ ∖ {0})⟶ℂ)
4439, 43syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)):(ℂ ∖ {0})⟶ℂ)
4544limcdif 24479 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = (((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) lim 𝑦))
46 eldifi 4054 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) → 𝑧 ∈ (ℂ ∖ {0}))
4746adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ∈ (ℂ ∖ {0}))
4847eldifad 3893 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ∈ ℂ)
4923ad2antlr 726 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑦 ∈ ℂ)
5048, 49subcld 10986 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧𝑦) ∈ ℂ)
5133adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝐴 / 𝑦) ∈ ℂ)
52 eldifsni 4683 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ≠ 0)
5347, 52syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ≠ 0)
5451, 48, 53divcld 11405 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝐴 / 𝑦) / 𝑧) ∈ ℂ)
55 mulneg12 11067 . . . . . . . . . . . . . . . . 17 (((𝑧𝑦) ∈ ℂ ∧ ((𝐴 / 𝑦) / 𝑧) ∈ ℂ) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
5650, 54, 55syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
5749, 48, 54subdird 11086 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
5848, 49negsubdi2d 11002 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -(𝑧𝑦) = (𝑦𝑧))
5958oveq1d 7150 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)))
60 oveq2 7143 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (𝐴 / 𝑥) = (𝐴 / 𝑧))
61 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))
62 ovex 7168 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 / 𝑧) ∈ V
6360, 61, 62fvmpt 6745 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝐴 / 𝑧))
6447, 63syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝐴 / 𝑧))
65 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝐴 ∈ ℂ)
6628ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑦 ≠ 0)
6765, 49, 66divcan2d 11407 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑦 · (𝐴 / 𝑦)) = 𝐴)
6867oveq1d 7150 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝐴 / 𝑧))
6949, 51, 48, 53divassd 11440 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
7064, 68, 693eqtr2d 2839 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
71 oveq2 7143 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (𝐴 / 𝑥) = (𝐴 / 𝑦))
72 ovex 7168 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 / 𝑦) ∈ V
7371, 61, 72fvmpt 6745 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝐴 / 𝑦))
7473ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝐴 / 𝑦))
7551, 48, 53divcan2d 11407 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧 · ((𝐴 / 𝑦) / 𝑧)) = (𝐴 / 𝑦))
7674, 75eqtr4d 2836 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝑧 · ((𝐴 / 𝑦) / 𝑧)))
7770, 76oveq12d 7153 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
7857, 59, 773eqtr4d 2843 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)))
7951, 48, 53divnegd 11418 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -((𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑧))
8079oveq2d 7151 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
8156, 78, 803eqtr3d 2841 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
8281oveq1d 7150 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)))
8351negcld 10973 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -(𝐴 / 𝑦) ∈ ℂ)
8483, 48, 53divcld 11405 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝐴 / 𝑦) / 𝑧) ∈ ℂ)
85 eldifsni 4683 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) → 𝑧𝑦)
8685adantl 485 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧𝑦)
8748, 49, 86subne0d 10995 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧𝑦) ≠ 0)
8884, 50, 87divcan3d 11410 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
8982, 88eqtrd 2833 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
9089mpteq2dva 5125 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧)))
91 difss 4059 . . . . . . . . . . . . 13 ((ℂ ∖ {0}) ∖ {𝑦}) ⊆ (ℂ ∖ {0})
92 resmpt 5872 . . . . . . . . . . . . 13 (((ℂ ∖ {0}) ∖ {𝑦}) ⊆ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧)))
9391, 92ax-mp 5 . . . . . . . . . . . 12 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧))
9490, 93eqtr4di 2851 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})))
9594oveq1d 7150 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦) = (((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) lim 𝑦))
9645, 95eqtr4d 2836 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
9742, 96eleqtrd 2892 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
9811cnfldtopon 23388 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
9998toponrestid 21526 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
100 eqid 2798 . . . . . . . . 9 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)))
101 ssidd 3938 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ℂ ⊆ ℂ)
1027adantr 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)):(ℂ ∖ {0})⟶ℂ)
103 difssd 4060 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (ℂ ∖ {0}) ⊆ ℂ)
10499, 11, 100, 101, 102, 103eldv 24501 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) ↔ (𝑦 ∈ ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) ∧ -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))))
10522, 97, 104mpbir2and 712 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)))
106 vex 3444 . . . . . . . 8 𝑦 ∈ V
107 negex 10873 . . . . . . . 8 -(𝐴 / (𝑦↑2)) ∈ V
108106, 107breldm 5741 . . . . . . 7 (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
109105, 108syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
1109, 109eqelssd 3936 . . . . 5 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (ℂ ∖ {0}))
111110feq2d 6473 . . . 4 (𝐴 ∈ ℂ → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ ↔ (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):(ℂ ∖ {0})⟶ℂ))
1121, 111mpbii 236 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):(ℂ ∖ {0})⟶ℂ)
113112ffnd 6488 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) Fn (ℂ ∖ {0}))
114 negex 10873 . . . 4 -(𝐴 / (𝑥↑2)) ∈ V
115114rgenw 3118 . . 3 𝑥 ∈ (ℂ ∖ {0})-(𝐴 / (𝑥↑2)) ∈ V
116 eqid 2798 . . . 4 (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))
117116fnmpt 6460 . . 3 (∀𝑥 ∈ (ℂ ∖ {0})-(𝐴 / (𝑥↑2)) ∈ V → (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) Fn (ℂ ∖ {0}))
118115, 117mp1i 13 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) Fn (ℂ ∖ {0}))
119 ffun 6490 . . . . 5 ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ → Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
1201, 119mp1i 13 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
121 funbrfv 6691 . . . 4 (Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) → (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2))))
122120, 105, 121sylc 65 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2)))
123 oveq1 7142 . . . . . . 7 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
124123oveq2d 7151 . . . . . 6 (𝑥 = 𝑦 → (𝐴 / (𝑥↑2)) = (𝐴 / (𝑦↑2)))
125124negeqd 10869 . . . . 5 (𝑥 = 𝑦 → -(𝐴 / (𝑥↑2)) = -(𝐴 / (𝑦↑2)))
126125, 116, 107fvmpt 6745 . . . 4 (𝑦 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦) = -(𝐴 / (𝑦↑2)))
127126adantl 485 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦) = -(𝐴 / (𝑦↑2)))
128122, 127eqtr4d 2836 . 2 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦))
129113, 118, 128eqfnfvd 6782 1 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  Vcvv 3441  cdif 3878  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110  dom cdm 5519  cres 5521  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526   · cmul 10531  cmin 10859  -cneg 10860   / cdiv 11286  2c2 11680  cexp 13425  TopOpenctopn 16687  fldccnfld 20091  Topctop 21498  Clsdccld 21621  intcnt 21622  Hauscha 21913  cnccncf 23481   lim climc 24465   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-t1 21919  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470
This theorem is referenced by:  dvrecg  24576  dvexp3  24581  dvtan  35107
  Copyright terms: Public domain W3C validator