MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrec Structured version   Visualization version   GIF version

Theorem dvrec 25866
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrec (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dvrec
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 25816 . . . 4 (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ
2 ssidd 3973 . . . . . . 7 (𝐴 ∈ ℂ → ℂ ⊆ ℂ)
3 eldifsn 4753 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
4 divcl 11850 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝐴 / 𝑥) ∈ ℂ)
543expb 1120 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (𝐴 / 𝑥) ∈ ℂ)
63, 5sylan2b 594 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝐴 / 𝑥) ∈ ℂ)
76fmpttd 7090 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)):(ℂ ∖ {0})⟶ℂ)
8 difssd 4103 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ ∖ {0}) ⊆ ℂ)
92, 7, 8dvbss 25809 . . . . . 6 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) ⊆ (ℂ ∖ {0}))
10 simpr 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0}))
11 eqid 2730 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1211cnfldtop 24678 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
13 cnn0opn 24682 . . . . . . . . . 10 (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld)
14 isopn3i 22976 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) = (ℂ ∖ {0}))
1512, 13, 14mp2an 692 . . . . . . . . 9 ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) = (ℂ ∖ {0})
1610, 15eleqtrrdi 2840 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})))
17 eldifi 4097 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
1817adantl 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
1918sqvald 14115 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦↑2) = (𝑦 · 𝑦))
2019oveq2d 7406 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / (𝑦↑2)) = (𝐴 / (𝑦 · 𝑦)))
21 simpl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝐴 ∈ ℂ)
22 eldifsni 4757 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
2322adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
2421, 18, 18, 23, 23divdiv1d 11996 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝐴 / 𝑦) / 𝑦) = (𝐴 / (𝑦 · 𝑦)))
2520, 24eqtr4d 2768 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / (𝑦↑2)) = ((𝐴 / 𝑦) / 𝑦))
2625negeqd 11422 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) = -((𝐴 / 𝑦) / 𝑦))
2721, 18, 23divcld 11965 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / 𝑦) ∈ ℂ)
2827, 18, 23divnegd 11978 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -((𝐴 / 𝑦) / 𝑦) = (-(𝐴 / 𝑦) / 𝑦))
2926, 28eqtrd 2765 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) = (-(𝐴 / 𝑦) / 𝑦))
3027negcld 11527 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / 𝑦) ∈ ℂ)
31 eqid 2730 . . . . . . . . . . . . 13 (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧))
3231cdivcncf 24821 . . . . . . . . . . . 12 (-(𝐴 / 𝑦) ∈ ℂ → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ))
3330, 32syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ))
34 oveq2 7398 . . . . . . . . . . 11 (𝑧 = 𝑦 → (-(𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑦))
3533, 10, 34cnmptlimc 25798 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (-(𝐴 / 𝑦) / 𝑦) ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
3629, 35eqeltrd 2829 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
37 cncff 24793 . . . . . . . . . . . 12 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)):(ℂ ∖ {0})⟶ℂ)
3833, 37syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)):(ℂ ∖ {0})⟶ℂ)
3938limcdif 25784 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = (((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) lim 𝑦))
40 eldifi 4097 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) → 𝑧 ∈ (ℂ ∖ {0}))
4140adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ∈ (ℂ ∖ {0}))
4241eldifad 3929 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ∈ ℂ)
4317ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑦 ∈ ℂ)
4442, 43subcld 11540 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧𝑦) ∈ ℂ)
4527adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝐴 / 𝑦) ∈ ℂ)
46 eldifsni 4757 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ≠ 0)
4741, 46syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ≠ 0)
4845, 42, 47divcld 11965 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝐴 / 𝑦) / 𝑧) ∈ ℂ)
49 mulneg12 11623 . . . . . . . . . . . . . . . . 17 (((𝑧𝑦) ∈ ℂ ∧ ((𝐴 / 𝑦) / 𝑧) ∈ ℂ) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
5044, 48, 49syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
5143, 42, 48subdird 11642 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
5242, 43negsubdi2d 11556 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -(𝑧𝑦) = (𝑦𝑧))
5352oveq1d 7405 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)))
54 oveq2 7398 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (𝐴 / 𝑥) = (𝐴 / 𝑧))
55 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))
56 ovex 7423 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 / 𝑧) ∈ V
5754, 55, 56fvmpt 6971 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝐴 / 𝑧))
5841, 57syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝐴 / 𝑧))
59 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝐴 ∈ ℂ)
6022ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑦 ≠ 0)
6159, 43, 60divcan2d 11967 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑦 · (𝐴 / 𝑦)) = 𝐴)
6261oveq1d 7405 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝐴 / 𝑧))
6343, 45, 42, 47divassd 12000 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
6458, 62, 633eqtr2d 2771 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
65 oveq2 7398 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (𝐴 / 𝑥) = (𝐴 / 𝑦))
66 ovex 7423 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 / 𝑦) ∈ V
6765, 55, 66fvmpt 6971 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝐴 / 𝑦))
6867ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝐴 / 𝑦))
6945, 42, 47divcan2d 11967 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧 · ((𝐴 / 𝑦) / 𝑧)) = (𝐴 / 𝑦))
7068, 69eqtr4d 2768 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝑧 · ((𝐴 / 𝑦) / 𝑧)))
7164, 70oveq12d 7408 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
7251, 53, 713eqtr4d 2775 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)))
7345, 42, 47divnegd 11978 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -((𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑧))
7473oveq2d 7406 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
7550, 72, 743eqtr3d 2773 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
7675oveq1d 7405 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)))
7745negcld 11527 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -(𝐴 / 𝑦) ∈ ℂ)
7877, 42, 47divcld 11965 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝐴 / 𝑦) / 𝑧) ∈ ℂ)
79 eldifsni 4757 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) → 𝑧𝑦)
8079adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧𝑦)
8142, 43, 80subne0d 11549 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧𝑦) ≠ 0)
8278, 44, 81divcan3d 11970 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
8376, 82eqtrd 2765 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
8483mpteq2dva 5203 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧)))
85 difss 4102 . . . . . . . . . . . . 13 ((ℂ ∖ {0}) ∖ {𝑦}) ⊆ (ℂ ∖ {0})
86 resmpt 6011 . . . . . . . . . . . . 13 (((ℂ ∖ {0}) ∖ {𝑦}) ⊆ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧)))
8785, 86ax-mp 5 . . . . . . . . . . . 12 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧))
8884, 87eqtr4di 2783 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})))
8988oveq1d 7405 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦) = (((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) lim 𝑦))
9039, 89eqtr4d 2768 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
9136, 90eleqtrd 2831 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
9211cnfldtopon 24677 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
9392toponrestid 22815 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
94 eqid 2730 . . . . . . . . 9 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)))
95 ssidd 3973 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ℂ ⊆ ℂ)
967adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)):(ℂ ∖ {0})⟶ℂ)
97 difssd 4103 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (ℂ ∖ {0}) ⊆ ℂ)
9893, 11, 94, 95, 96, 97eldv 25806 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) ↔ (𝑦 ∈ ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) ∧ -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))))
9916, 91, 98mpbir2and 713 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)))
100 vex 3454 . . . . . . . 8 𝑦 ∈ V
101 negex 11426 . . . . . . . 8 -(𝐴 / (𝑦↑2)) ∈ V
102100, 101breldm 5875 . . . . . . 7 (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
10399, 102syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
1049, 103eqelssd 3971 . . . . 5 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (ℂ ∖ {0}))
105104feq2d 6675 . . . 4 (𝐴 ∈ ℂ → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ ↔ (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):(ℂ ∖ {0})⟶ℂ))
1061, 105mpbii 233 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):(ℂ ∖ {0})⟶ℂ)
107106ffnd 6692 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) Fn (ℂ ∖ {0}))
108 negex 11426 . . . 4 -(𝐴 / (𝑥↑2)) ∈ V
109108rgenw 3049 . . 3 𝑥 ∈ (ℂ ∖ {0})-(𝐴 / (𝑥↑2)) ∈ V
110 eqid 2730 . . . 4 (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))
111110fnmpt 6661 . . 3 (∀𝑥 ∈ (ℂ ∖ {0})-(𝐴 / (𝑥↑2)) ∈ V → (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) Fn (ℂ ∖ {0}))
112109, 111mp1i 13 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) Fn (ℂ ∖ {0}))
113 ffun 6694 . . . . 5 ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ → Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
1141, 113mp1i 13 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
115 funbrfv 6912 . . . 4 (Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) → (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2))))
116114, 99, 115sylc 65 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2)))
117 oveq1 7397 . . . . . . 7 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
118117oveq2d 7406 . . . . . 6 (𝑥 = 𝑦 → (𝐴 / (𝑥↑2)) = (𝐴 / (𝑦↑2)))
119118negeqd 11422 . . . . 5 (𝑥 = 𝑦 → -(𝐴 / (𝑥↑2)) = -(𝐴 / (𝑦↑2)))
120119, 110, 101fvmpt 6971 . . . 4 (𝑦 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦) = -(𝐴 / (𝑦↑2)))
121120adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦) = -(𝐴 / (𝑦↑2)))
122116, 121eqtr4d 2768 . 2 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦))
123107, 112, 122eqfnfvd 7009 1 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cdif 3914  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191  dom cdm 5641  cres 5643  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075   · cmul 11080  cmin 11412  -cneg 11413   / cdiv 11842  2c2 12248  cexp 14033  TopOpenctopn 17391  fldccnfld 21271  Topctop 22787  intcnt 22911  cnccncf 24776   lim climc 25770   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-t1 23208  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  dvrecg  25884  dvexp3  25889  dvtan  37671
  Copyright terms: Public domain W3C validator