MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrec Structured version   Visualization version   GIF version

Theorem dvrec 25024
Description: Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dvrec (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dvrec
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 24977 . . . 4 (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ
2 ssidd 3940 . . . . . . 7 (𝐴 ∈ ℂ → ℂ ⊆ ℂ)
3 eldifsn 4717 . . . . . . . . 9 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
4 divcl 11569 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝐴 / 𝑥) ∈ ℂ)
543expb 1118 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (𝐴 / 𝑥) ∈ ℂ)
63, 5sylan2b 593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝐴 / 𝑥) ∈ ℂ)
76fmpttd 6971 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)):(ℂ ∖ {0})⟶ℂ)
8 difssd 4063 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ ∖ {0}) ⊆ ℂ)
92, 7, 8dvbss 24970 . . . . . 6 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) ⊆ (ℂ ∖ {0}))
10 simpr 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0}))
11 eqid 2738 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1211cnfldtop 23853 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
1311cnfldhaus 23854 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Haus
14 0cn 10898 . . . . . . . . . . . 12 0 ∈ ℂ
15 unicntop 23855 . . . . . . . . . . . . 13 ℂ = (TopOpen‘ℂfld)
1615sncld 22430 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Haus ∧ 0 ∈ ℂ) → {0} ∈ (Clsd‘(TopOpen‘ℂfld)))
1713, 14, 16mp2an 688 . . . . . . . . . . 11 {0} ∈ (Clsd‘(TopOpen‘ℂfld))
1815cldopn 22090 . . . . . . . . . . 11 ({0} ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld))
1917, 18ax-mp 5 . . . . . . . . . 10 (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld)
20 isopn3i 22141 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) = (ℂ ∖ {0}))
2112, 19, 20mp2an 688 . . . . . . . . 9 ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) = (ℂ ∖ {0})
2210, 21eleqtrrdi 2850 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})))
23 eldifi 4057 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
2423adantl 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
2524sqvald 13789 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦↑2) = (𝑦 · 𝑦))
2625oveq2d 7271 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / (𝑦↑2)) = (𝐴 / (𝑦 · 𝑦)))
27 simpl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝐴 ∈ ℂ)
28 eldifsni 4720 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
2928adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
3027, 24, 24, 29, 29divdiv1d 11712 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝐴 / 𝑦) / 𝑦) = (𝐴 / (𝑦 · 𝑦)))
3126, 30eqtr4d 2781 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / (𝑦↑2)) = ((𝐴 / 𝑦) / 𝑦))
3231negeqd 11145 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) = -((𝐴 / 𝑦) / 𝑦))
3327, 24, 29divcld 11681 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / 𝑦) ∈ ℂ)
3433, 24, 29divnegd 11694 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -((𝐴 / 𝑦) / 𝑦) = (-(𝐴 / 𝑦) / 𝑦))
3532, 34eqtrd 2778 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) = (-(𝐴 / 𝑦) / 𝑦))
3633negcld 11249 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / 𝑦) ∈ ℂ)
37 eqid 2738 . . . . . . . . . . . . 13 (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧))
3837cdivcncf 23990 . . . . . . . . . . . 12 (-(𝐴 / 𝑦) ∈ ℂ → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ))
3936, 38syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ))
40 oveq2 7263 . . . . . . . . . . 11 (𝑧 = 𝑦 → (-(𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑦))
4139, 10, 40cnmptlimc 24959 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (-(𝐴 / 𝑦) / 𝑦) ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
4235, 41eqeltrd 2839 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦))
43 cncff 23962 . . . . . . . . . . . 12 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ∈ ((ℂ ∖ {0})–cn→ℂ) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)):(ℂ ∖ {0})⟶ℂ)
4439, 43syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)):(ℂ ∖ {0})⟶ℂ)
4544limcdif 24945 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = (((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) lim 𝑦))
46 eldifi 4057 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) → 𝑧 ∈ (ℂ ∖ {0}))
4746adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ∈ (ℂ ∖ {0}))
4847eldifad 3895 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ∈ ℂ)
4923ad2antlr 723 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑦 ∈ ℂ)
5048, 49subcld 11262 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧𝑦) ∈ ℂ)
5133adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝐴 / 𝑦) ∈ ℂ)
52 eldifsni 4720 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (ℂ ∖ {0}) → 𝑧 ≠ 0)
5347, 52syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧 ≠ 0)
5451, 48, 53divcld 11681 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝐴 / 𝑦) / 𝑧) ∈ ℂ)
55 mulneg12 11343 . . . . . . . . . . . . . . . . 17 (((𝑧𝑦) ∈ ℂ ∧ ((𝐴 / 𝑦) / 𝑧) ∈ ℂ) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
5650, 54, 55syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)))
5749, 48, 54subdird 11362 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
5848, 49negsubdi2d 11278 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -(𝑧𝑦) = (𝑦𝑧))
5958oveq1d 7270 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = ((𝑦𝑧) · ((𝐴 / 𝑦) / 𝑧)))
60 oveq2 7263 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (𝐴 / 𝑥) = (𝐴 / 𝑧))
61 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))
62 ovex 7288 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 / 𝑧) ∈ V
6360, 61, 62fvmpt 6857 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝐴 / 𝑧))
6447, 63syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝐴 / 𝑧))
65 simpll 763 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝐴 ∈ ℂ)
6628ad2antlr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑦 ≠ 0)
6765, 49, 66divcan2d 11683 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑦 · (𝐴 / 𝑦)) = 𝐴)
6867oveq1d 7270 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝐴 / 𝑧))
6949, 51, 48, 53divassd 11716 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑦 · (𝐴 / 𝑦)) / 𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
7064, 68, 693eqtr2d 2784 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) = (𝑦 · ((𝐴 / 𝑦) / 𝑧)))
71 oveq2 7263 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (𝐴 / 𝑥) = (𝐴 / 𝑦))
72 ovex 7288 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 / 𝑦) ∈ V
7371, 61, 72fvmpt 6857 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝐴 / 𝑦))
7473ad2antlr 723 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝐴 / 𝑦))
7551, 48, 53divcan2d 11683 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧 · ((𝐴 / 𝑦) / 𝑧)) = (𝐴 / 𝑦))
7674, 75eqtr4d 2781 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦) = (𝑧 · ((𝐴 / 𝑦) / 𝑧)))
7770, 76oveq12d 7273 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑦 · ((𝐴 / 𝑦) / 𝑧)) − (𝑧 · ((𝐴 / 𝑦) / 𝑧))))
7857, 59, 773eqtr4d 2788 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝑧𝑦) · ((𝐴 / 𝑦) / 𝑧)) = (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)))
7951, 48, 53divnegd 11694 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -((𝐴 / 𝑦) / 𝑧) = (-(𝐴 / 𝑦) / 𝑧))
8079oveq2d 7271 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((𝑧𝑦) · -((𝐴 / 𝑦) / 𝑧)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
8156, 78, 803eqtr3d 2786 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) = ((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)))
8281oveq1d 7270 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)))
8351negcld 11249 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → -(𝐴 / 𝑦) ∈ ℂ)
8483, 48, 53divcld 11681 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (-(𝐴 / 𝑦) / 𝑧) ∈ ℂ)
85 eldifsni 4720 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) → 𝑧𝑦)
8685adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → 𝑧𝑦)
8748, 49, 86subne0d 11271 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (𝑧𝑦) ≠ 0)
8884, 50, 87divcan3d 11686 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → (((𝑧𝑦) · (-(𝐴 / 𝑦) / 𝑧)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
8982, 88eqtrd 2778 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦})) → ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)) = (-(𝐴 / 𝑦) / 𝑧))
9089mpteq2dva 5170 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧)))
91 difss 4062 . . . . . . . . . . . . 13 ((ℂ ∖ {0}) ∖ {𝑦}) ⊆ (ℂ ∖ {0})
92 resmpt 5934 . . . . . . . . . . . . 13 (((ℂ ∖ {0}) ∖ {𝑦}) ⊆ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧)))
9391, 92ax-mp 5 . . . . . . . . . . . 12 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ (-(𝐴 / 𝑦) / 𝑧))
9490, 93eqtr4di 2797 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})))
9594oveq1d 7270 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦) = (((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) ↾ ((ℂ ∖ {0}) ∖ {𝑦})) lim 𝑦))
9645, 95eqtr4d 2781 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (-(𝐴 / 𝑦) / 𝑧)) lim 𝑦) = ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
9742, 96eleqtrd 2841 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))
9811cnfldtopon 23852 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
9998toponrestid 21978 . . . . . . . . 9 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
100 eqid 2738 . . . . . . . . 9 (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) = (𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦)))
101 ssidd 3940 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ℂ ⊆ ℂ)
1027adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)):(ℂ ∖ {0})⟶ℂ)
103 difssd 4063 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (ℂ ∖ {0}) ⊆ ℂ)
10499, 11, 100, 101, 102, 103eldv 24967 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) ↔ (𝑦 ∈ ((int‘(TopOpen‘ℂfld))‘(ℂ ∖ {0})) ∧ -(𝐴 / (𝑦↑2)) ∈ ((𝑧 ∈ ((ℂ ∖ {0}) ∖ {𝑦}) ↦ ((((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑧) − ((𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))‘𝑦)) / (𝑧𝑦))) lim 𝑦))))
10522, 97, 104mpbir2and 709 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)))
106 vex 3426 . . . . . . . 8 𝑦 ∈ V
107 negex 11149 . . . . . . . 8 -(𝐴 / (𝑦↑2)) ∈ V
108106, 107breldm 5806 . . . . . . 7 (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
109105, 108syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
1109, 109eqelssd 3938 . . . . 5 (𝐴 ∈ ℂ → dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (ℂ ∖ {0}))
111110feq2d 6570 . . . 4 (𝐴 ∈ ℂ → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ ↔ (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):(ℂ ∖ {0})⟶ℂ))
1121, 111mpbii 232 . . 3 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):(ℂ ∖ {0})⟶ℂ)
113112ffnd 6585 . 2 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) Fn (ℂ ∖ {0}))
114 negex 11149 . . . 4 -(𝐴 / (𝑥↑2)) ∈ V
115114rgenw 3075 . . 3 𝑥 ∈ (ℂ ∖ {0})-(𝐴 / (𝑥↑2)) ∈ V
116 eqid 2738 . . . 4 (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))
117116fnmpt 6557 . . 3 (∀𝑥 ∈ (ℂ ∖ {0})-(𝐴 / (𝑥↑2)) ∈ V → (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) Fn (ℂ ∖ {0}))
118115, 117mp1i 13 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))) Fn (ℂ ∖ {0}))
119 ffun 6587 . . . . 5 ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))):dom (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))⟶ℂ → Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
1201, 119mp1i 13 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))))
121 funbrfv 6802 . . . 4 (Fun (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) → (𝑦(ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))-(𝐴 / (𝑦↑2)) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2))))
122120, 105, 121sylc 65 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = -(𝐴 / (𝑦↑2)))
123 oveq1 7262 . . . . . . 7 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
124123oveq2d 7271 . . . . . 6 (𝑥 = 𝑦 → (𝐴 / (𝑥↑2)) = (𝐴 / (𝑦↑2)))
125124negeqd 11145 . . . . 5 (𝑥 = 𝑦 → -(𝐴 / (𝑥↑2)) = -(𝐴 / (𝑦↑2)))
126125, 116, 107fvmpt 6857 . . . 4 (𝑦 ∈ (ℂ ∖ {0}) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦) = -(𝐴 / (𝑦↑2)))
127126adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦) = -(𝐴 / (𝑦↑2)))
128122, 127eqtr4d 2781 . 2 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → ((ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)))‘𝑦) = ((𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2)))‘𝑦))
129113, 118, 128eqfnfvd 6894 1 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑥↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cdif 3880  wss 3883  {csn 4558   class class class wbr 5070  cmpt 5153  dom cdm 5580  cres 5582  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   · cmul 10807  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  cexp 13710  TopOpenctopn 17049  fldccnfld 20510  Topctop 21950  Clsdccld 22075  intcnt 22076  Hauscha 22367  cnccncf 23945   lim climc 24931   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-t1 22373  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvrecg  25042  dvexp3  25047  dvtan  35754
  Copyright terms: Public domain W3C validator