Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelen Structured version   Visualization version   GIF version

Theorem sprsymrelen 47485
Description: The class 𝑃 of subsets of the set of pairs over a fixed set 𝑉 and the class 𝑅 of symmetric relations on the fixed set 𝑉 are equinumerous. (Contributed by AV, 27-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
Assertion
Ref Expression
sprsymrelen (𝑉𝑊𝑃𝑅)
Distinct variable groups:   𝑥,𝑉,𝑦,𝑟   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟)   𝑅(𝑥,𝑦,𝑟)   𝑊(𝑟)

Proof of Theorem sprsymrelen
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 sprsymrelf.p . . 3 𝑃 = 𝒫 (Pairs‘𝑉)
2 sprsymrelf.r . . 3 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
31, 2sprbisymrel 47484 . 2 (𝑉𝑊 → ∃𝑓 𝑓:𝑃1-1-onto𝑅)
4 bren 8889 . 2 (𝑃𝑅 ↔ ∃𝑓 𝑓:𝑃1-1-onto𝑅)
53, 4sylibr 234 1 (𝑉𝑊𝑃𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  wral 3044  {crab 3396  𝒫 cpw 4553   class class class wbr 5095   × cxp 5621  1-1-ontowf1o 6485  cfv 6486  cen 8876  Pairscspr 47462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-en 8880  df-spr 47463
This theorem is referenced by:  uspgrymrelen  48138
  Copyright terms: Public domain W3C validator