| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sprsymrelen | Structured version Visualization version GIF version | ||
| Description: The class 𝑃 of subsets of the set of pairs over a fixed set 𝑉 and the class 𝑅 of symmetric relations on the fixed set 𝑉 are equinumerous. (Contributed by AV, 27-Nov-2021.) |
| Ref | Expression |
|---|---|
| sprsymrelf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
| sprsymrelf.r | ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
| Ref | Expression |
|---|---|
| sprsymrelen | ⊢ (𝑉 ∈ 𝑊 → 𝑃 ≈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sprsymrelf.p | . . 3 ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) | |
| 2 | sprsymrelf.r | . . 3 ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | |
| 3 | 1, 2 | sprbisymrel 47536 | . 2 ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝑃–1-1-onto→𝑅) |
| 4 | bren 8879 | . 2 ⊢ (𝑃 ≈ 𝑅 ↔ ∃𝑓 𝑓:𝑃–1-1-onto→𝑅) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (𝑉 ∈ 𝑊 → 𝑃 ≈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 {crab 3395 𝒫 cpw 4550 class class class wbr 5091 × cxp 5614 –1-1-onto→wf1o 6480 ‘cfv 6481 ≈ cen 8866 Pairscspr 47514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-en 8870 df-spr 47515 |
| This theorem is referenced by: uspgrymrelen 48190 |
| Copyright terms: Public domain | W3C validator |