| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sprsymrelen | Structured version Visualization version GIF version | ||
| Description: The class 𝑃 of subsets of the set of pairs over a fixed set 𝑉 and the class 𝑅 of symmetric relations on the fixed set 𝑉 are equinumerous. (Contributed by AV, 27-Nov-2021.) |
| Ref | Expression |
|---|---|
| sprsymrelf.p | ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) |
| sprsymrelf.r | ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
| Ref | Expression |
|---|---|
| sprsymrelen | ⊢ (𝑉 ∈ 𝑊 → 𝑃 ≈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sprsymrelf.p | . . 3 ⊢ 𝑃 = 𝒫 (Pairs‘𝑉) | |
| 2 | sprsymrelf.r | . . 3 ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | |
| 3 | 1, 2 | sprbisymrel 47626 | . 2 ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝑃–1-1-onto→𝑅) |
| 4 | bren 8887 | . 2 ⊢ (𝑃 ≈ 𝑅 ↔ ∃𝑓 𝑓:𝑃–1-1-onto→𝑅) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (𝑉 ∈ 𝑊 → 𝑃 ≈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∀wral 3048 {crab 3396 𝒫 cpw 4551 class class class wbr 5095 × cxp 5619 –1-1-onto→wf1o 6487 ‘cfv 6488 ≈ cen 8874 Pairscspr 47604 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-en 8878 df-spr 47605 |
| This theorem is referenced by: uspgrymrelen 48280 |
| Copyright terms: Public domain | W3C validator |