Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . . 5
β’ ((π½ β Top β§ π β π β§ π β π) β π½ β Top) |
2 | | simp2 1135 |
. . . . . 6
β’ ((π½ β Top β§ π β π β§ π β π) β π β π) |
3 | 2 | ssdifssd 4143 |
. . . . 5
β’ ((π½ β Top β§ π β π β§ π β π) β (π β {π₯}) β π) |
4 | | simp3 1136 |
. . . . . 6
β’ ((π½ β Top β§ π β π β§ π β π) β π β π) |
5 | 4 | ssdifd 4141 |
. . . . 5
β’ ((π½ β Top β§ π β π β§ π β π) β (π β {π₯}) β (π β {π₯})) |
6 | | lpfval.1 |
. . . . . 6
β’ π = βͺ
π½ |
7 | 6 | clsss 22780 |
. . . . 5
β’ ((π½ β Top β§ (π β {π₯}) β π β§ (π β {π₯}) β (π β {π₯})) β ((clsβπ½)β(π β {π₯})) β ((clsβπ½)β(π β {π₯}))) |
8 | 1, 3, 5, 7 | syl3anc 1369 |
. . . 4
β’ ((π½ β Top β§ π β π β§ π β π) β ((clsβπ½)β(π β {π₯})) β ((clsβπ½)β(π β {π₯}))) |
9 | 8 | sseld 3982 |
. . 3
β’ ((π½ β Top β§ π β π β§ π β π) β (π₯ β ((clsβπ½)β(π β {π₯})) β π₯ β ((clsβπ½)β(π β {π₯})))) |
10 | 4, 2 | sstrd 3993 |
. . . 4
β’ ((π½ β Top β§ π β π β§ π β π) β π β π) |
11 | 6 | islp 22866 |
. . . 4
β’ ((π½ β Top β§ π β π) β (π₯ β ((limPtβπ½)βπ) β π₯ β ((clsβπ½)β(π β {π₯})))) |
12 | 1, 10, 11 | syl2anc 582 |
. . 3
β’ ((π½ β Top β§ π β π β§ π β π) β (π₯ β ((limPtβπ½)βπ) β π₯ β ((clsβπ½)β(π β {π₯})))) |
13 | 6 | islp 22866 |
. . . 4
β’ ((π½ β Top β§ π β π) β (π₯ β ((limPtβπ½)βπ) β π₯ β ((clsβπ½)β(π β {π₯})))) |
14 | 1, 2, 13 | syl2anc 582 |
. . 3
β’ ((π½ β Top β§ π β π β§ π β π) β (π₯ β ((limPtβπ½)βπ) β π₯ β ((clsβπ½)β(π β {π₯})))) |
15 | 9, 12, 14 | 3imtr4d 293 |
. 2
β’ ((π½ β Top β§ π β π β§ π β π) β (π₯ β ((limPtβπ½)βπ) β π₯ β ((limPtβπ½)βπ))) |
16 | 15 | ssrdv 3989 |
1
β’ ((π½ β Top β§ π β π β§ π β π) β ((limPtβπ½)βπ) β ((limPtβπ½)βπ)) |