MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpss3 Structured version   Visualization version   GIF version

Theorem lpss3 21446
Description: Subset relationship for limit points. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
lpss3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((limPt‘𝐽)‘𝑇) ⊆ ((limPt‘𝐽)‘𝑆))

Proof of Theorem lpss3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1116 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝐽 ∈ Top)
2 simp2 1117 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑆𝑋)
32ssdifssd 4005 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
4 simp3 1118 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑆)
54ssdifd 4003 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥}))
6 lpfval.1 . . . . . 6 𝑋 = 𝐽
76clsss 21356 . . . . 5 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋 ∧ (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥})) → ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
81, 3, 5, 7syl3anc 1351 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
98sseld 3853 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
104, 2sstrd 3864 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑋)
116islp 21442 . . . 4 ((𝐽 ∈ Top ∧ 𝑇𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥}))))
121, 10, 11syl2anc 576 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥}))))
136islp 21442 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
141, 2, 13syl2anc 576 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
159, 12, 143imtr4d 286 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) → 𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
1615ssrdv 3860 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((limPt‘𝐽)‘𝑇) ⊆ ((limPt‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1068   = wceq 1507  wcel 2048  cdif 3822  wss 3825  {csn 4435   cuni 4706  cfv 6182  Topctop 21195  clsccl 21320  limPtclp 21436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-top 21196  df-cld 21321  df-cls 21323  df-lp 21438
This theorem is referenced by:  perfdvf  24194  pibt2  34074  lpss2  34419  fourierdlem113  41881
  Copyright terms: Public domain W3C validator