MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpss3 Structured version   Visualization version   GIF version

Theorem lpss3 22203
Description: Subset relationship for limit points. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
lpss3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((limPt‘𝐽)‘𝑇) ⊆ ((limPt‘𝐽)‘𝑆))

Proof of Theorem lpss3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝐽 ∈ Top)
2 simp2 1135 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑆𝑋)
32ssdifssd 4073 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
4 simp3 1136 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑆)
54ssdifd 4071 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥}))
6 lpfval.1 . . . . . 6 𝑋 = 𝐽
76clsss 22113 . . . . 5 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋 ∧ (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥})) → ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
81, 3, 5, 7syl3anc 1369 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
98sseld 3916 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
104, 2sstrd 3927 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑋)
116islp 22199 . . . 4 ((𝐽 ∈ Top ∧ 𝑇𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥}))))
121, 10, 11syl2anc 583 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥}))))
136islp 22199 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
141, 2, 13syl2anc 583 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
159, 12, 143imtr4d 293 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) → 𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
1615ssrdv 3923 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((limPt‘𝐽)‘𝑇) ⊆ ((limPt‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  cdif 3880  wss 3883  {csn 4558   cuni 4836  cfv 6418  Topctop 21950  clsccl 22077  limPtclp 22193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-cld 22078  df-cls 22080  df-lp 22195
This theorem is referenced by:  perfdvf  24972  pibt2  35515  lpss2  35839  fourierdlem113  43650
  Copyright terms: Public domain W3C validator