Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lpss3 | Structured version Visualization version GIF version |
Description: Subset relationship for limit points. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
lpss3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((limPt‘𝐽)‘𝑇) ⊆ ((limPt‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝐽 ∈ Top) | |
2 | simp2 1135 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑆 ⊆ 𝑋) | |
3 | 2 | ssdifssd 4073 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → (𝑆 ∖ {𝑥}) ⊆ 𝑋) |
4 | simp3 1136 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑆) | |
5 | 4 | ssdifd 4071 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥})) |
6 | lpfval.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
7 | 6 | clsss 22113 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋 ∧ (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥})) → ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) |
8 | 1, 3, 5, 7 | syl3anc 1369 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))) |
9 | 8 | sseld 3916 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → (𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
10 | 4, 2 | sstrd 3927 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
11 | 6 | islp 22199 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥})))) |
12 | 1, 10, 11 | syl2anc 583 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥})))) |
13 | 6 | islp 22199 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
14 | 1, 2, 13 | syl2anc 583 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))) |
15 | 9, 12, 14 | 3imtr4d 293 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) → 𝑥 ∈ ((limPt‘𝐽)‘𝑆))) |
16 | 15 | ssrdv 3923 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((limPt‘𝐽)‘𝑇) ⊆ ((limPt‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 clsccl 22077 limPtclp 22193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-top 21951 df-cld 22078 df-cls 22080 df-lp 22195 |
This theorem is referenced by: perfdvf 24972 pibt2 35515 lpss2 35839 fourierdlem113 43650 |
Copyright terms: Public domain | W3C validator |