MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpss3 Structured version   Visualization version   GIF version

Theorem lpss3 23080
Description: Subset relationship for limit points. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
lpss3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((limPt‘𝐽)‘𝑇) ⊆ ((limPt‘𝐽)‘𝑆))

Proof of Theorem lpss3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝐽 ∈ Top)
2 simp2 1137 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑆𝑋)
32ssdifssd 4122 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
4 simp3 1138 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑆)
54ssdifd 4120 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥}))
6 lpfval.1 . . . . . 6 𝑋 = 𝐽
76clsss 22990 . . . . 5 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋 ∧ (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥})) → ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
81, 3, 5, 7syl3anc 1373 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
98sseld 3957 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
104, 2sstrd 3969 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑋)
116islp 23076 . . . 4 ((𝐽 ∈ Top ∧ 𝑇𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥}))))
121, 10, 11syl2anc 584 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥}))))
136islp 23076 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
141, 2, 13syl2anc 584 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
159, 12, 143imtr4d 294 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) → 𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
1615ssrdv 3964 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((limPt‘𝐽)‘𝑇) ⊆ ((limPt‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2108  cdif 3923  wss 3926  {csn 4601   cuni 4883  cfv 6530  Topctop 22829  clsccl 22954  limPtclp 23070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-top 22830  df-cld 22955  df-cls 22957  df-lp 23072
This theorem is referenced by:  perfdvf  25854  pibt2  37381  lpss2  37724  fourierdlem113  46196
  Copyright terms: Public domain W3C validator