MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpss3 Structured version   Visualization version   GIF version

Theorem lpss3 22393
Description: Subset relationship for limit points. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
lpss3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((limPt‘𝐽)‘𝑇) ⊆ ((limPt‘𝐽)‘𝑆))

Proof of Theorem lpss3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝐽 ∈ Top)
2 simp2 1136 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑆𝑋)
32ssdifssd 4088 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
4 simp3 1137 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑆)
54ssdifd 4086 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥}))
6 lpfval.1 . . . . . 6 𝑋 = 𝐽
76clsss 22303 . . . . 5 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑋 ∧ (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥})) → ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
81, 3, 5, 7syl3anc 1370 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) ⊆ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})))
98sseld 3930 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥})) → 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
104, 2sstrd 3941 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑋)
116islp 22389 . . . 4 ((𝐽 ∈ Top ∧ 𝑇𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥}))))
121, 10, 11syl2anc 584 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑇 ∖ {𝑥}))))
136islp 22389 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
141, 2, 13syl2anc 584 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
159, 12, 143imtr4d 293 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝑥 ∈ ((limPt‘𝐽)‘𝑇) → 𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
1615ssrdv 3937 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((limPt‘𝐽)‘𝑇) ⊆ ((limPt‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1540  wcel 2105  cdif 3894  wss 3897  {csn 4572   cuni 4851  cfv 6473  Topctop 22140  clsccl 22267  limPtclp 22383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-top 22141  df-cld 22268  df-cls 22270  df-lp 22385
This theorem is referenced by:  perfdvf  25165  pibt2  35686  lpss2  36010  fourierdlem113  44085
  Copyright terms: Public domain W3C validator