Step | Hyp | Ref
| Expression |
1 | | lcfrlem16.x |
. . . . 5
β’ (π β π β (πΈ β { 0 })) |
2 | 1 | eldifad 3959 |
. . . 4
β’ (π β π β πΈ) |
3 | | lcfrlem16.m |
. . . 4
β’ πΈ = βͺ π β πΊ ( β₯ β(πΏβπ)) |
4 | 2, 3 | eleqtrdi 2841 |
. . 3
β’ (π β π β βͺ
π β πΊ ( β₯ β(πΏβπ))) |
5 | | eliun 5000 |
. . 3
β’ (π β βͺ π β πΊ ( β₯ β(πΏβπ)) β βπ β πΊ π β ( β₯ β(πΏβπ))) |
6 | 4, 5 | sylib 217 |
. 2
β’ (π β βπ β πΊ π β ( β₯ β(πΏβπ))) |
7 | | lcf1o.s |
. . . . 5
β’ π = (Scalarβπ) |
8 | | lcf1o.r |
. . . . 5
β’ π
= (Baseβπ) |
9 | | lcf1o.f |
. . . . 5
β’ πΉ = (LFnlβπ) |
10 | | lcf1o.l |
. . . . 5
β’ πΏ = (LKerβπ) |
11 | | lcf1o.d |
. . . . 5
β’ π· = (LDualβπ) |
12 | | eqid 2730 |
. . . . 5
β’ (
Β·π βπ·) = ( Β·π
βπ·) |
13 | | lcf1o.h |
. . . . . . 7
β’ π» = (LHypβπΎ) |
14 | | lcf1o.u |
. . . . . . 7
β’ π = ((DVecHβπΎ)βπ) |
15 | | lcflo.k |
. . . . . . 7
β’ (π β (πΎ β HL β§ π β π»)) |
16 | 13, 14, 15 | dvhlvec 40283 |
. . . . . 6
β’ (π β π β LVec) |
17 | 16 | 3ad2ant1 1131 |
. . . . 5
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β π β LVec) |
18 | | lcfrlem16.g |
. . . . . . . 8
β’ (π β πΊ β π) |
19 | | eqid 2730 |
. . . . . . . . 9
β’
(Baseβπ·) =
(Baseβπ·) |
20 | | lcfrlem16.p |
. . . . . . . . 9
β’ π = (LSubSpβπ·) |
21 | 19, 20 | lssel 20692 |
. . . . . . . 8
β’ ((πΊ β π β§ π β πΊ) β π β (Baseβπ·)) |
22 | 18, 21 | sylan 578 |
. . . . . . 7
β’ ((π β§ π β πΊ) β π β (Baseβπ·)) |
23 | 13, 14, 15 | dvhlmod 40284 |
. . . . . . . . 9
β’ (π β π β LMod) |
24 | 9, 11, 19, 23 | ldualvbase 38299 |
. . . . . . . 8
β’ (π β (Baseβπ·) = πΉ) |
25 | 24 | adantr 479 |
. . . . . . 7
β’ ((π β§ π β πΊ) β (Baseβπ·) = πΉ) |
26 | 22, 25 | eleqtrd 2833 |
. . . . . 6
β’ ((π β§ π β πΊ) β π β πΉ) |
27 | 26 | 3adant3 1130 |
. . . . 5
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β π β πΉ) |
28 | | lcf1o.o |
. . . . . . 7
β’ β₯ =
((ocHβπΎ)βπ) |
29 | | lcf1o.v |
. . . . . . 7
β’ π = (Baseβπ) |
30 | | lcf1o.a |
. . . . . . 7
β’ + =
(+gβπ) |
31 | | lcf1o.t |
. . . . . . 7
β’ Β· = (
Β·π βπ) |
32 | | lcf1o.z |
. . . . . . 7
β’ 0 =
(0gβπ) |
33 | | lcf1o.q |
. . . . . . 7
β’ π = (0gβπ·) |
34 | | lcf1o.c |
. . . . . . 7
β’ πΆ = {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)} |
35 | | lcf1o.j |
. . . . . . 7
β’ π½ = (π₯ β (π β { 0 }) β¦ (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) |
36 | 15 | adantr 479 |
. . . . . . . . . . . . 13
β’ ((π β§ π β πΊ) β (πΎ β HL β§ π β π»)) |
37 | 23 | adantr 479 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β πΊ) β π β LMod) |
38 | 29, 9, 10, 37, 26 | lkrssv 38269 |
. . . . . . . . . . . . 13
β’ ((π β§ π β πΊ) β (πΏβπ) β π) |
39 | 13, 14, 29, 28 | dochssv 40529 |
. . . . . . . . . . . . 13
β’ (((πΎ β HL β§ π β π») β§ (πΏβπ) β π) β ( β₯ β(πΏβπ)) β π) |
40 | 36, 38, 39 | syl2anc 582 |
. . . . . . . . . . . 12
β’ ((π β§ π β πΊ) β ( β₯ β(πΏβπ)) β π) |
41 | 40 | ralrimiva 3144 |
. . . . . . . . . . 11
β’ (π β βπ β πΊ ( β₯ β(πΏβπ)) β π) |
42 | | iunss 5047 |
. . . . . . . . . . 11
β’ (βͺ π β πΊ ( β₯ β(πΏβπ)) β π β βπ β πΊ ( β₯ β(πΏβπ)) β π) |
43 | 41, 42 | sylibr 233 |
. . . . . . . . . 10
β’ (π β βͺ π β πΊ ( β₯ β(πΏβπ)) β π) |
44 | 3, 43 | eqsstrid 4029 |
. . . . . . . . 9
β’ (π β πΈ β π) |
45 | 44 | ssdifd 4139 |
. . . . . . . 8
β’ (π β (πΈ β { 0 }) β (π β { 0 })) |
46 | 45, 1 | sseldd 3982 |
. . . . . . 7
β’ (π β π β (π β { 0 })) |
47 | 13, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46 | lcfrlem10 40726 |
. . . . . 6
β’ (π β (π½βπ) β πΉ) |
48 | 47 | 3ad2ant1 1131 |
. . . . 5
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β (π½βπ) β πΉ) |
49 | | eqid 2730 |
. . . . . . 7
β’
(LSAtomsβπ) =
(LSAtomsβπ) |
50 | 15 | 3ad2ant1 1131 |
. . . . . . . 8
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β (πΎ β HL β§ π β π»)) |
51 | | simp3 1136 |
. . . . . . . . 9
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β π β ( β₯ β(πΏβπ))) |
52 | | eldifsni 4792 |
. . . . . . . . . . 11
β’ (π β (πΈ β { 0 }) β π β 0 ) |
53 | 1, 52 | syl 17 |
. . . . . . . . . 10
β’ (π β π β 0 ) |
54 | 53 | 3ad2ant1 1131 |
. . . . . . . . 9
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β π β 0 ) |
55 | | eldifsn 4789 |
. . . . . . . . 9
β’ (π β (( β₯ β(πΏβπ)) β { 0 }) β (π β ( β₯ β(πΏβπ)) β§ π β 0 )) |
56 | 51, 54, 55 | sylanbrc 581 |
. . . . . . . 8
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β π β (( β₯ β(πΏβπ)) β { 0 })) |
57 | 13, 28, 14, 29, 32, 9, 10, 50, 27, 56, 49 | dochsnkrlem2 40644 |
. . . . . . 7
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β ( β₯ β(πΏβπ)) β (LSAtomsβπ)) |
58 | 13, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46 | lcfrlem15 40731 |
. . . . . . . . . 10
β’ (π β π β ( β₯ β(πΏβ(π½βπ)))) |
59 | | eldifsn 4789 |
. . . . . . . . . 10
β’ (π β (( β₯ β(πΏβ(π½βπ))) β { 0 }) β (π β ( β₯ β(πΏβ(π½βπ))) β§ π β 0 )) |
60 | 58, 53, 59 | sylanbrc 581 |
. . . . . . . . 9
β’ (π β π β (( β₯ β(πΏβ(π½βπ))) β { 0 })) |
61 | 13, 28, 14, 29, 32, 9, 10, 15, 47, 60, 49 | dochsnkrlem2 40644 |
. . . . . . . 8
β’ (π β ( β₯ β(πΏβ(π½βπ))) β (LSAtomsβπ)) |
62 | 61 | 3ad2ant1 1131 |
. . . . . . 7
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β ( β₯ β(πΏβ(π½βπ))) β (LSAtomsβπ)) |
63 | 58 | 3ad2ant1 1131 |
. . . . . . 7
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β π β ( β₯ β(πΏβ(π½βπ)))) |
64 | 32, 49, 17, 57, 62, 54, 51, 63 | lsat2el 38180 |
. . . . . 6
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β ( β₯ β(πΏβπ)) = ( β₯ β(πΏβ(π½βπ)))) |
65 | | eqid 2730 |
. . . . . . 7
β’
((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) |
66 | | lcfrlem16.gs |
. . . . . . . . . 10
β’ (π β πΊ β πΆ) |
67 | 66 | 3ad2ant1 1131 |
. . . . . . . . 9
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β πΊ β πΆ) |
68 | | simp2 1135 |
. . . . . . . . 9
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β π β πΊ) |
69 | 67, 68 | sseldd 3982 |
. . . . . . . 8
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β π β πΆ) |
70 | 13, 65, 28, 14, 9, 10, 34, 50, 27 | lcfl5 40670 |
. . . . . . . 8
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β (π β πΆ β (πΏβπ) β ran ((DIsoHβπΎ)βπ))) |
71 | 69, 70 | mpbid 231 |
. . . . . . 7
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β (πΏβπ) β ran ((DIsoHβπΎ)βπ)) |
72 | 13, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46 | lcfrlem13 40729 |
. . . . . . . . . 10
β’ (π β (π½βπ) β (πΆ β {π})) |
73 | 72 | eldifad 3959 |
. . . . . . . . 9
β’ (π β (π½βπ) β πΆ) |
74 | 13, 65, 28, 14, 9, 10, 34, 15, 47 | lcfl5 40670 |
. . . . . . . . 9
β’ (π β ((π½βπ) β πΆ β (πΏβ(π½βπ)) β ran ((DIsoHβπΎ)βπ))) |
75 | 73, 74 | mpbid 231 |
. . . . . . . 8
β’ (π β (πΏβ(π½βπ)) β ran ((DIsoHβπΎ)βπ)) |
76 | 75 | 3ad2ant1 1131 |
. . . . . . 7
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β (πΏβ(π½βπ)) β ran ((DIsoHβπΎ)βπ)) |
77 | 13, 65, 28, 50, 71, 76 | doch11 40547 |
. . . . . 6
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β (( β₯ β(πΏβπ)) = ( β₯ β(πΏβ(π½βπ))) β (πΏβπ) = (πΏβ(π½βπ)))) |
78 | 64, 77 | mpbid 231 |
. . . . 5
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β (πΏβπ) = (πΏβ(π½βπ))) |
79 | 7, 8, 9, 10, 11, 12, 17, 27, 48, 78 | eqlkr4 38338 |
. . . 4
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β βπ β π
(π½βπ) = (π( Β·π
βπ·)π)) |
80 | 23 | 3ad2ant1 1131 |
. . . . . . . 8
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β π β LMod) |
81 | 80 | adantr 479 |
. . . . . . 7
β’ (((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β§ π β π
) β π β LMod) |
82 | 18 | 3ad2ant1 1131 |
. . . . . . . 8
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β πΊ β π) |
83 | 82 | adantr 479 |
. . . . . . 7
β’ (((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β§ π β π
) β πΊ β π) |
84 | | simpr 483 |
. . . . . . 7
β’ (((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β§ π β π
) β π β π
) |
85 | | simpl2 1190 |
. . . . . . 7
β’ (((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β§ π β π
) β π β πΊ) |
86 | 7, 8, 11, 12, 20, 81, 83, 84, 85 | ldualssvscl 38331 |
. . . . . 6
β’ (((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β§ π β π
) β (π( Β·π
βπ·)π) β πΊ) |
87 | | eleq1 2819 |
. . . . . 6
β’ ((π½βπ) = (π( Β·π
βπ·)π) β ((π½βπ) β πΊ β (π( Β·π
βπ·)π) β πΊ)) |
88 | 86, 87 | syl5ibrcom 246 |
. . . . 5
β’ (((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β§ π β π
) β ((π½βπ) = (π( Β·π
βπ·)π) β (π½βπ) β πΊ)) |
89 | 88 | rexlimdva 3153 |
. . . 4
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β (βπ β π
(π½βπ) = (π( Β·π
βπ·)π) β (π½βπ) β πΊ)) |
90 | 79, 89 | mpd 15 |
. . 3
β’ ((π β§ π β πΊ β§ π β ( β₯ β(πΏβπ))) β (π½βπ) β πΊ) |
91 | 90 | rexlimdv3a 3157 |
. 2
β’ (π β (βπ β πΊ π β ( β₯ β(πΏβπ)) β (π½βπ) β πΊ)) |
92 | 6, 91 | mpd 15 |
1
β’ (π β (π½βπ) β πΊ) |