Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem16 Structured version   Visualization version   GIF version

Theorem lcfrlem16 41596
Description: Lemma for lcfr 41623. (Contributed by NM, 8-Mar-2015.)
Hypotheses
Ref Expression
lcf1o.h 𝐻 = (LHyp‘𝐾)
lcf1o.o = ((ocH‘𝐾)‘𝑊)
lcf1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcf1o.v 𝑉 = (Base‘𝑈)
lcf1o.a + = (+g𝑈)
lcf1o.t · = ( ·𝑠𝑈)
lcf1o.s 𝑆 = (Scalar‘𝑈)
lcf1o.r 𝑅 = (Base‘𝑆)
lcf1o.z 0 = (0g𝑈)
lcf1o.f 𝐹 = (LFnl‘𝑈)
lcf1o.l 𝐿 = (LKer‘𝑈)
lcf1o.d 𝐷 = (LDual‘𝑈)
lcf1o.q 𝑄 = (0g𝐷)
lcf1o.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcf1o.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcflo.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem16.p 𝑃 = (LSubSp‘𝐷)
lcfrlem16.g (𝜑𝐺𝑃)
lcfrlem16.gs (𝜑𝐺𝐶)
lcfrlem16.m 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem16.x (𝜑𝑋 ∈ (𝐸 ∖ { 0 }))
Assertion
Ref Expression
lcfrlem16 (𝜑 → (𝐽𝑋) ∈ 𝐺)
Distinct variable groups:   𝑥,𝑤,   𝑥, 0   𝑥,𝑣,𝑉   𝑥, ·   𝑣,𝑘,𝑤,𝑥,𝑋   𝑥, +   𝑥,𝑅   𝑓,𝑘,𝑣,𝑤, +   𝑓,𝐹,𝑘   𝑔,𝑘,𝐺   𝑓,𝑔,𝐽,𝑘   𝑓,𝐿,𝑘   ,𝑓,𝑘,𝑣   𝑅,𝑓,𝑘,𝑣   𝑆,𝑘   · ,𝑓,𝑘,𝑣,𝑤   𝑈,𝑘   𝑓,𝑉,𝑔,𝑥   𝑓,𝑋   𝑣,𝑔,𝑤,𝑥,𝑋   𝜑,𝑔,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓)   𝐶(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑃(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   + (𝑔)   𝑄(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑅(𝑤,𝑔)   𝑆(𝑥,𝑤,𝑣,𝑓,𝑔)   · (𝑔)   𝑈(𝑥,𝑤,𝑣,𝑓,𝑔)   𝐸(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑔)   𝐺(𝑥,𝑤,𝑣,𝑓)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐽(𝑥,𝑤,𝑣)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑔)   (𝑔)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   0 (𝑤,𝑣,𝑓,𝑔,𝑘)

Proof of Theorem lcfrlem16
StepHypRef Expression
1 lcfrlem16.x . . . . 5 (𝜑𝑋 ∈ (𝐸 ∖ { 0 }))
21eldifad 3914 . . . 4 (𝜑𝑋𝐸)
3 lcfrlem16.m . . . 4 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
42, 3eleqtrdi 2841 . . 3 (𝜑𝑋 𝑔𝐺 ( ‘(𝐿𝑔)))
5 eliun 4945 . . 3 (𝑋 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)))
64, 5sylib 218 . 2 (𝜑 → ∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)))
7 lcf1o.s . . . . 5 𝑆 = (Scalar‘𝑈)
8 lcf1o.r . . . . 5 𝑅 = (Base‘𝑆)
9 lcf1o.f . . . . 5 𝐹 = (LFnl‘𝑈)
10 lcf1o.l . . . . 5 𝐿 = (LKer‘𝑈)
11 lcf1o.d . . . . 5 𝐷 = (LDual‘𝑈)
12 eqid 2731 . . . . 5 ( ·𝑠𝐷) = ( ·𝑠𝐷)
13 lcf1o.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
14 lcf1o.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
15 lcflo.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
1613, 14, 15dvhlvec 41147 . . . . . 6 (𝜑𝑈 ∈ LVec)
17163ad2ant1 1133 . . . . 5 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑈 ∈ LVec)
18 lcfrlem16.g . . . . . . . 8 (𝜑𝐺𝑃)
19 eqid 2731 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
20 lcfrlem16.p . . . . . . . . 9 𝑃 = (LSubSp‘𝐷)
2119, 20lssel 20868 . . . . . . . 8 ((𝐺𝑃𝑔𝐺) → 𝑔 ∈ (Base‘𝐷))
2218, 21sylan 580 . . . . . . 7 ((𝜑𝑔𝐺) → 𝑔 ∈ (Base‘𝐷))
2313, 14, 15dvhlmod 41148 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
249, 11, 19, 23ldualvbase 39164 . . . . . . . 8 (𝜑 → (Base‘𝐷) = 𝐹)
2524adantr 480 . . . . . . 7 ((𝜑𝑔𝐺) → (Base‘𝐷) = 𝐹)
2622, 25eleqtrd 2833 . . . . . 6 ((𝜑𝑔𝐺) → 𝑔𝐹)
27263adant3 1132 . . . . 5 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑔𝐹)
28 lcf1o.o . . . . . . 7 = ((ocH‘𝐾)‘𝑊)
29 lcf1o.v . . . . . . 7 𝑉 = (Base‘𝑈)
30 lcf1o.a . . . . . . 7 + = (+g𝑈)
31 lcf1o.t . . . . . . 7 · = ( ·𝑠𝑈)
32 lcf1o.z . . . . . . 7 0 = (0g𝑈)
33 lcf1o.q . . . . . . 7 𝑄 = (0g𝐷)
34 lcf1o.c . . . . . . 7 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
35 lcf1o.j . . . . . . 7 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
3615adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑔𝐺) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3723adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐺) → 𝑈 ∈ LMod)
3829, 9, 10, 37, 26lkrssv 39134 . . . . . . . . . . . . 13 ((𝜑𝑔𝐺) → (𝐿𝑔) ⊆ 𝑉)
3913, 14, 29, 28dochssv 41393 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝑔) ⊆ 𝑉) → ( ‘(𝐿𝑔)) ⊆ 𝑉)
4036, 38, 39syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑔𝐺) → ( ‘(𝐿𝑔)) ⊆ 𝑉)
4140ralrimiva 3124 . . . . . . . . . . 11 (𝜑 → ∀𝑔𝐺 ( ‘(𝐿𝑔)) ⊆ 𝑉)
42 iunss 4994 . . . . . . . . . . 11 ( 𝑔𝐺 ( ‘(𝐿𝑔)) ⊆ 𝑉 ↔ ∀𝑔𝐺 ( ‘(𝐿𝑔)) ⊆ 𝑉)
4341, 42sylibr 234 . . . . . . . . . 10 (𝜑 𝑔𝐺 ( ‘(𝐿𝑔)) ⊆ 𝑉)
443, 43eqsstrid 3973 . . . . . . . . 9 (𝜑𝐸𝑉)
4544ssdifd 4095 . . . . . . . 8 (𝜑 → (𝐸 ∖ { 0 }) ⊆ (𝑉 ∖ { 0 }))
4645, 1sseldd 3935 . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
4713, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46lcfrlem10 41590 . . . . . 6 (𝜑 → (𝐽𝑋) ∈ 𝐹)
48473ad2ant1 1133 . . . . 5 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (𝐽𝑋) ∈ 𝐹)
49 eqid 2731 . . . . . . 7 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
50153ad2ant1 1133 . . . . . . . 8 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
51 simp3 1138 . . . . . . . . 9 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑋 ∈ ( ‘(𝐿𝑔)))
52 eldifsni 4742 . . . . . . . . . . 11 (𝑋 ∈ (𝐸 ∖ { 0 }) → 𝑋0 )
531, 52syl 17 . . . . . . . . . 10 (𝜑𝑋0 )
54533ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑋0 )
55 eldifsn 4738 . . . . . . . . 9 (𝑋 ∈ (( ‘(𝐿𝑔)) ∖ { 0 }) ↔ (𝑋 ∈ ( ‘(𝐿𝑔)) ∧ 𝑋0 ))
5651, 54, 55sylanbrc 583 . . . . . . . 8 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑋 ∈ (( ‘(𝐿𝑔)) ∖ { 0 }))
5713, 28, 14, 29, 32, 9, 10, 50, 27, 56, 49dochsnkrlem2 41508 . . . . . . 7 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → ( ‘(𝐿𝑔)) ∈ (LSAtoms‘𝑈))
5813, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46lcfrlem15 41595 . . . . . . . . . 10 (𝜑𝑋 ∈ ( ‘(𝐿‘(𝐽𝑋))))
59 eldifsn 4738 . . . . . . . . . 10 (𝑋 ∈ (( ‘(𝐿‘(𝐽𝑋))) ∖ { 0 }) ↔ (𝑋 ∈ ( ‘(𝐿‘(𝐽𝑋))) ∧ 𝑋0 ))
6058, 53, 59sylanbrc 583 . . . . . . . . 9 (𝜑𝑋 ∈ (( ‘(𝐿‘(𝐽𝑋))) ∖ { 0 }))
6113, 28, 14, 29, 32, 9, 10, 15, 47, 60, 49dochsnkrlem2 41508 . . . . . . . 8 (𝜑 → ( ‘(𝐿‘(𝐽𝑋))) ∈ (LSAtoms‘𝑈))
62613ad2ant1 1133 . . . . . . 7 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → ( ‘(𝐿‘(𝐽𝑋))) ∈ (LSAtoms‘𝑈))
63583ad2ant1 1133 . . . . . . 7 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑋 ∈ ( ‘(𝐿‘(𝐽𝑋))))
6432, 49, 17, 57, 62, 54, 51, 63lsat2el 39045 . . . . . 6 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → ( ‘(𝐿𝑔)) = ( ‘(𝐿‘(𝐽𝑋))))
65 eqid 2731 . . . . . . 7 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
66 lcfrlem16.gs . . . . . . . . . 10 (𝜑𝐺𝐶)
67663ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝐺𝐶)
68 simp2 1137 . . . . . . . . 9 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑔𝐺)
6967, 68sseldd 3935 . . . . . . . 8 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑔𝐶)
7013, 65, 28, 14, 9, 10, 34, 50, 27lcfl5 41534 . . . . . . . 8 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (𝑔𝐶 ↔ (𝐿𝑔) ∈ ran ((DIsoH‘𝐾)‘𝑊)))
7169, 70mpbid 232 . . . . . . 7 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (𝐿𝑔) ∈ ran ((DIsoH‘𝐾)‘𝑊))
7213, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46lcfrlem13 41593 . . . . . . . . . 10 (𝜑 → (𝐽𝑋) ∈ (𝐶 ∖ {𝑄}))
7372eldifad 3914 . . . . . . . . 9 (𝜑 → (𝐽𝑋) ∈ 𝐶)
7413, 65, 28, 14, 9, 10, 34, 15, 47lcfl5 41534 . . . . . . . . 9 (𝜑 → ((𝐽𝑋) ∈ 𝐶 ↔ (𝐿‘(𝐽𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊)))
7573, 74mpbid 232 . . . . . . . 8 (𝜑 → (𝐿‘(𝐽𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
76753ad2ant1 1133 . . . . . . 7 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (𝐿‘(𝐽𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
7713, 65, 28, 50, 71, 76doch11 41411 . . . . . 6 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (( ‘(𝐿𝑔)) = ( ‘(𝐿‘(𝐽𝑋))) ↔ (𝐿𝑔) = (𝐿‘(𝐽𝑋))))
7864, 77mpbid 232 . . . . 5 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (𝐿𝑔) = (𝐿‘(𝐽𝑋)))
797, 8, 9, 10, 11, 12, 17, 27, 48, 78eqlkr4 39203 . . . 4 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → ∃𝑘𝑅 (𝐽𝑋) = (𝑘( ·𝑠𝐷)𝑔))
80233ad2ant1 1133 . . . . . . . 8 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑈 ∈ LMod)
8180adantr 480 . . . . . . 7 (((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) ∧ 𝑘𝑅) → 𝑈 ∈ LMod)
82183ad2ant1 1133 . . . . . . . 8 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝐺𝑃)
8382adantr 480 . . . . . . 7 (((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) ∧ 𝑘𝑅) → 𝐺𝑃)
84 simpr 484 . . . . . . 7 (((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) ∧ 𝑘𝑅) → 𝑘𝑅)
85 simpl2 1193 . . . . . . 7 (((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) ∧ 𝑘𝑅) → 𝑔𝐺)
867, 8, 11, 12, 20, 81, 83, 84, 85ldualssvscl 39196 . . . . . 6 (((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) ∧ 𝑘𝑅) → (𝑘( ·𝑠𝐷)𝑔) ∈ 𝐺)
87 eleq1 2819 . . . . . 6 ((𝐽𝑋) = (𝑘( ·𝑠𝐷)𝑔) → ((𝐽𝑋) ∈ 𝐺 ↔ (𝑘( ·𝑠𝐷)𝑔) ∈ 𝐺))
8886, 87syl5ibrcom 247 . . . . 5 (((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) ∧ 𝑘𝑅) → ((𝐽𝑋) = (𝑘( ·𝑠𝐷)𝑔) → (𝐽𝑋) ∈ 𝐺))
8988rexlimdva 3133 . . . 4 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (∃𝑘𝑅 (𝐽𝑋) = (𝑘( ·𝑠𝐷)𝑔) → (𝐽𝑋) ∈ 𝐺))
9079, 89mpd 15 . . 3 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (𝐽𝑋) ∈ 𝐺)
9190rexlimdv3a 3137 . 2 (𝜑 → (∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)) → (𝐽𝑋) ∈ 𝐺))
926, 91mpd 15 1 (𝜑 → (𝐽𝑋) ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  cdif 3899  wss 3902  {csn 4576   ciun 4941  cmpt 5172  ran crn 5617  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  Scalarcsca 17161   ·𝑠 cvsca 17162  0gc0g 17340  LModclmod 20791  LSubSpclss 20862  LVecclvec 21034  LSAtomsclsa 39012  LFnlclfn 39095  LKerclk 39123  LDualcld 39161  HLchlt 39388  LHypclh 40022  DVecHcdvh 41116  DIsoHcdih 41266  ocHcoch 41385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-riotaBAD 38991
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-0g 17342  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-p1 18327  df-lat 18335  df-clat 18402  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-subg 19033  df-cntz 19227  df-lsm 19546  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20644  df-lmod 20793  df-lss 20863  df-lsp 20903  df-lvec 21035  df-lsatoms 39014  df-lshyp 39015  df-lfl 39096  df-lkr 39124  df-ldual 39162  df-oposet 39214  df-ol 39216  df-oml 39217  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389  df-llines 39536  df-lplanes 39537  df-lvols 39538  df-lines 39539  df-psubsp 39541  df-pmap 39542  df-padd 39834  df-lhyp 40026  df-laut 40027  df-ldil 40142  df-ltrn 40143  df-trl 40197  df-tgrp 40781  df-tendo 40793  df-edring 40795  df-dveca 41041  df-disoa 41067  df-dvech 41117  df-dib 41177  df-dic 41211  df-dih 41267  df-doch 41386  df-djh 41433
This theorem is referenced by:  lcfrlem27  41607  lcfrlem37  41617
  Copyright terms: Public domain W3C validator