Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem16 Structured version   Visualization version   GIF version

Theorem lcfrlem16 38847
Description: Lemma for lcfr 38874. (Contributed by NM, 8-Mar-2015.)
Hypotheses
Ref Expression
lcf1o.h 𝐻 = (LHyp‘𝐾)
lcf1o.o = ((ocH‘𝐾)‘𝑊)
lcf1o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcf1o.v 𝑉 = (Base‘𝑈)
lcf1o.a + = (+g𝑈)
lcf1o.t · = ( ·𝑠𝑈)
lcf1o.s 𝑆 = (Scalar‘𝑈)
lcf1o.r 𝑅 = (Base‘𝑆)
lcf1o.z 0 = (0g𝑈)
lcf1o.f 𝐹 = (LFnl‘𝑈)
lcf1o.l 𝐿 = (LKer‘𝑈)
lcf1o.d 𝐷 = (LDual‘𝑈)
lcf1o.q 𝑄 = (0g𝐷)
lcf1o.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcf1o.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcflo.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem16.p 𝑃 = (LSubSp‘𝐷)
lcfrlem16.g (𝜑𝐺𝑃)
lcfrlem16.gs (𝜑𝐺𝐶)
lcfrlem16.m 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem16.x (𝜑𝑋 ∈ (𝐸 ∖ { 0 }))
Assertion
Ref Expression
lcfrlem16 (𝜑 → (𝐽𝑋) ∈ 𝐺)
Distinct variable groups:   𝑥,𝑤,   𝑥, 0   𝑥,𝑣,𝑉   𝑥, ·   𝑣,𝑘,𝑤,𝑥,𝑋   𝑥, +   𝑥,𝑅   𝑓,𝑘,𝑣,𝑤, +   𝑓,𝐹,𝑘   𝑔,𝑘,𝐺   𝑓,𝑔,𝐽,𝑘   𝑓,𝐿,𝑘   ,𝑓,𝑘,𝑣   𝑅,𝑓,𝑘,𝑣   𝑆,𝑘   · ,𝑓,𝑘,𝑣,𝑤   𝑈,𝑘   𝑓,𝑉,𝑔,𝑥   𝑓,𝑋   𝑣,𝑔,𝑤,𝑥,𝑋   𝜑,𝑔,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓)   𝐶(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑃(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   + (𝑔)   𝑄(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑅(𝑤,𝑔)   𝑆(𝑥,𝑤,𝑣,𝑓,𝑔)   · (𝑔)   𝑈(𝑥,𝑤,𝑣,𝑓,𝑔)   𝐸(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑔)   𝐺(𝑥,𝑤,𝑣,𝑓)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐽(𝑥,𝑤,𝑣)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑔)   (𝑔)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   0 (𝑤,𝑣,𝑓,𝑔,𝑘)

Proof of Theorem lcfrlem16
StepHypRef Expression
1 lcfrlem16.x . . . . 5 (𝜑𝑋 ∈ (𝐸 ∖ { 0 }))
21eldifad 3896 . . . 4 (𝜑𝑋𝐸)
3 lcfrlem16.m . . . 4 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
42, 3eleqtrdi 2903 . . 3 (𝜑𝑋 𝑔𝐺 ( ‘(𝐿𝑔)))
5 eliun 4888 . . 3 (𝑋 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)))
64, 5sylib 221 . 2 (𝜑 → ∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)))
7 lcf1o.s . . . . 5 𝑆 = (Scalar‘𝑈)
8 lcf1o.r . . . . 5 𝑅 = (Base‘𝑆)
9 lcf1o.f . . . . 5 𝐹 = (LFnl‘𝑈)
10 lcf1o.l . . . . 5 𝐿 = (LKer‘𝑈)
11 lcf1o.d . . . . 5 𝐷 = (LDual‘𝑈)
12 eqid 2801 . . . . 5 ( ·𝑠𝐷) = ( ·𝑠𝐷)
13 lcf1o.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
14 lcf1o.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
15 lcflo.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
1613, 14, 15dvhlvec 38398 . . . . . 6 (𝜑𝑈 ∈ LVec)
17163ad2ant1 1130 . . . . 5 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑈 ∈ LVec)
18 lcfrlem16.g . . . . . . . 8 (𝜑𝐺𝑃)
19 eqid 2801 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
20 lcfrlem16.p . . . . . . . . 9 𝑃 = (LSubSp‘𝐷)
2119, 20lssel 19705 . . . . . . . 8 ((𝐺𝑃𝑔𝐺) → 𝑔 ∈ (Base‘𝐷))
2218, 21sylan 583 . . . . . . 7 ((𝜑𝑔𝐺) → 𝑔 ∈ (Base‘𝐷))
2313, 14, 15dvhlmod 38399 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
249, 11, 19, 23ldualvbase 36415 . . . . . . . 8 (𝜑 → (Base‘𝐷) = 𝐹)
2524adantr 484 . . . . . . 7 ((𝜑𝑔𝐺) → (Base‘𝐷) = 𝐹)
2622, 25eleqtrd 2895 . . . . . 6 ((𝜑𝑔𝐺) → 𝑔𝐹)
27263adant3 1129 . . . . 5 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑔𝐹)
28 lcf1o.o . . . . . . 7 = ((ocH‘𝐾)‘𝑊)
29 lcf1o.v . . . . . . 7 𝑉 = (Base‘𝑈)
30 lcf1o.a . . . . . . 7 + = (+g𝑈)
31 lcf1o.t . . . . . . 7 · = ( ·𝑠𝑈)
32 lcf1o.z . . . . . . 7 0 = (0g𝑈)
33 lcf1o.q . . . . . . 7 𝑄 = (0g𝐷)
34 lcf1o.c . . . . . . 7 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
35 lcf1o.j . . . . . . 7 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
3615adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑔𝐺) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3723adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐺) → 𝑈 ∈ LMod)
3829, 9, 10, 37, 26lkrssv 36385 . . . . . . . . . . . . 13 ((𝜑𝑔𝐺) → (𝐿𝑔) ⊆ 𝑉)
3913, 14, 29, 28dochssv 38644 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝑔) ⊆ 𝑉) → ( ‘(𝐿𝑔)) ⊆ 𝑉)
4036, 38, 39syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑔𝐺) → ( ‘(𝐿𝑔)) ⊆ 𝑉)
4140ralrimiva 3152 . . . . . . . . . . 11 (𝜑 → ∀𝑔𝐺 ( ‘(𝐿𝑔)) ⊆ 𝑉)
42 iunss 4935 . . . . . . . . . . 11 ( 𝑔𝐺 ( ‘(𝐿𝑔)) ⊆ 𝑉 ↔ ∀𝑔𝐺 ( ‘(𝐿𝑔)) ⊆ 𝑉)
4341, 42sylibr 237 . . . . . . . . . 10 (𝜑 𝑔𝐺 ( ‘(𝐿𝑔)) ⊆ 𝑉)
443, 43eqsstrid 3966 . . . . . . . . 9 (𝜑𝐸𝑉)
4544ssdifd 4071 . . . . . . . 8 (𝜑 → (𝐸 ∖ { 0 }) ⊆ (𝑉 ∖ { 0 }))
4645, 1sseldd 3919 . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
4713, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46lcfrlem10 38841 . . . . . 6 (𝜑 → (𝐽𝑋) ∈ 𝐹)
48473ad2ant1 1130 . . . . 5 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (𝐽𝑋) ∈ 𝐹)
49 eqid 2801 . . . . . . 7 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
50153ad2ant1 1130 . . . . . . . 8 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
51 simp3 1135 . . . . . . . . 9 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑋 ∈ ( ‘(𝐿𝑔)))
52 eldifsni 4686 . . . . . . . . . . 11 (𝑋 ∈ (𝐸 ∖ { 0 }) → 𝑋0 )
531, 52syl 17 . . . . . . . . . 10 (𝜑𝑋0 )
54533ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑋0 )
55 eldifsn 4683 . . . . . . . . 9 (𝑋 ∈ (( ‘(𝐿𝑔)) ∖ { 0 }) ↔ (𝑋 ∈ ( ‘(𝐿𝑔)) ∧ 𝑋0 ))
5651, 54, 55sylanbrc 586 . . . . . . . 8 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑋 ∈ (( ‘(𝐿𝑔)) ∖ { 0 }))
5713, 28, 14, 29, 32, 9, 10, 50, 27, 56, 49dochsnkrlem2 38759 . . . . . . 7 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → ( ‘(𝐿𝑔)) ∈ (LSAtoms‘𝑈))
5813, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46lcfrlem15 38846 . . . . . . . . . 10 (𝜑𝑋 ∈ ( ‘(𝐿‘(𝐽𝑋))))
59 eldifsn 4683 . . . . . . . . . 10 (𝑋 ∈ (( ‘(𝐿‘(𝐽𝑋))) ∖ { 0 }) ↔ (𝑋 ∈ ( ‘(𝐿‘(𝐽𝑋))) ∧ 𝑋0 ))
6058, 53, 59sylanbrc 586 . . . . . . . . 9 (𝜑𝑋 ∈ (( ‘(𝐿‘(𝐽𝑋))) ∖ { 0 }))
6113, 28, 14, 29, 32, 9, 10, 15, 47, 60, 49dochsnkrlem2 38759 . . . . . . . 8 (𝜑 → ( ‘(𝐿‘(𝐽𝑋))) ∈ (LSAtoms‘𝑈))
62613ad2ant1 1130 . . . . . . 7 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → ( ‘(𝐿‘(𝐽𝑋))) ∈ (LSAtoms‘𝑈))
63583ad2ant1 1130 . . . . . . 7 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑋 ∈ ( ‘(𝐿‘(𝐽𝑋))))
6432, 49, 17, 57, 62, 54, 51, 63lsat2el 36296 . . . . . 6 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → ( ‘(𝐿𝑔)) = ( ‘(𝐿‘(𝐽𝑋))))
65 eqid 2801 . . . . . . 7 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
66 lcfrlem16.gs . . . . . . . . . 10 (𝜑𝐺𝐶)
67663ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝐺𝐶)
68 simp2 1134 . . . . . . . . 9 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑔𝐺)
6967, 68sseldd 3919 . . . . . . . 8 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑔𝐶)
7013, 65, 28, 14, 9, 10, 34, 50, 27lcfl5 38785 . . . . . . . 8 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (𝑔𝐶 ↔ (𝐿𝑔) ∈ ran ((DIsoH‘𝐾)‘𝑊)))
7169, 70mpbid 235 . . . . . . 7 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (𝐿𝑔) ∈ ran ((DIsoH‘𝐾)‘𝑊))
7213, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46lcfrlem13 38844 . . . . . . . . . 10 (𝜑 → (𝐽𝑋) ∈ (𝐶 ∖ {𝑄}))
7372eldifad 3896 . . . . . . . . 9 (𝜑 → (𝐽𝑋) ∈ 𝐶)
7413, 65, 28, 14, 9, 10, 34, 15, 47lcfl5 38785 . . . . . . . . 9 (𝜑 → ((𝐽𝑋) ∈ 𝐶 ↔ (𝐿‘(𝐽𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊)))
7573, 74mpbid 235 . . . . . . . 8 (𝜑 → (𝐿‘(𝐽𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
76753ad2ant1 1130 . . . . . . 7 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (𝐿‘(𝐽𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
7713, 65, 28, 50, 71, 76doch11 38662 . . . . . 6 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (( ‘(𝐿𝑔)) = ( ‘(𝐿‘(𝐽𝑋))) ↔ (𝐿𝑔) = (𝐿‘(𝐽𝑋))))
7864, 77mpbid 235 . . . . 5 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (𝐿𝑔) = (𝐿‘(𝐽𝑋)))
797, 8, 9, 10, 11, 12, 17, 27, 48, 78eqlkr4 36454 . . . 4 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → ∃𝑘𝑅 (𝐽𝑋) = (𝑘( ·𝑠𝐷)𝑔))
80233ad2ant1 1130 . . . . . . . 8 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝑈 ∈ LMod)
8180adantr 484 . . . . . . 7 (((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) ∧ 𝑘𝑅) → 𝑈 ∈ LMod)
82183ad2ant1 1130 . . . . . . . 8 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → 𝐺𝑃)
8382adantr 484 . . . . . . 7 (((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) ∧ 𝑘𝑅) → 𝐺𝑃)
84 simpr 488 . . . . . . 7 (((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) ∧ 𝑘𝑅) → 𝑘𝑅)
85 simpl2 1189 . . . . . . 7 (((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) ∧ 𝑘𝑅) → 𝑔𝐺)
867, 8, 11, 12, 20, 81, 83, 84, 85ldualssvscl 36447 . . . . . 6 (((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) ∧ 𝑘𝑅) → (𝑘( ·𝑠𝐷)𝑔) ∈ 𝐺)
87 eleq1 2880 . . . . . 6 ((𝐽𝑋) = (𝑘( ·𝑠𝐷)𝑔) → ((𝐽𝑋) ∈ 𝐺 ↔ (𝑘( ·𝑠𝐷)𝑔) ∈ 𝐺))
8886, 87syl5ibrcom 250 . . . . 5 (((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) ∧ 𝑘𝑅) → ((𝐽𝑋) = (𝑘( ·𝑠𝐷)𝑔) → (𝐽𝑋) ∈ 𝐺))
8988rexlimdva 3246 . . . 4 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (∃𝑘𝑅 (𝐽𝑋) = (𝑘( ·𝑠𝐷)𝑔) → (𝐽𝑋) ∈ 𝐺))
9079, 89mpd 15 . . 3 ((𝜑𝑔𝐺𝑋 ∈ ( ‘(𝐿𝑔))) → (𝐽𝑋) ∈ 𝐺)
9190rexlimdv3a 3248 . 2 (𝜑 → (∃𝑔𝐺 𝑋 ∈ ( ‘(𝐿𝑔)) → (𝐽𝑋) ∈ 𝐺))
926, 91mpd 15 1 (𝜑 → (𝐽𝑋) ∈ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  {crab 3113  cdif 3881  wss 3884  {csn 4528   ciun 4884  cmpt 5113  ran crn 5524  cfv 6328  crio 7096  (class class class)co 7139  Basecbs 16478  +gcplusg 16560  Scalarcsca 16563   ·𝑠 cvsca 16564  0gc0g 16708  LModclmod 19630  LSubSpclss 19699  LVecclvec 19870  LSAtomsclsa 36263  LFnlclfn 36346  LKerclk 36374  LDualcld 36412  HLchlt 36639  LHypclh 37273  DVecHcdvh 38367  DIsoHcdih 38517  ocHcoch 38636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-riotaBAD 36242
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-undef 7926  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-0g 16710  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-cntz 18442  df-lsm 18756  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-drng 19500  df-lmod 19632  df-lss 19700  df-lsp 19740  df-lvec 19871  df-lsatoms 36265  df-lshyp 36266  df-lfl 36347  df-lkr 36375  df-ldual 36413  df-oposet 36465  df-ol 36467  df-oml 36468  df-covers 36555  df-ats 36556  df-atl 36587  df-cvlat 36611  df-hlat 36640  df-llines 36787  df-lplanes 36788  df-lvols 36789  df-lines 36790  df-psubsp 36792  df-pmap 36793  df-padd 37085  df-lhyp 37277  df-laut 37278  df-ldil 37393  df-ltrn 37394  df-trl 37448  df-tgrp 38032  df-tendo 38044  df-edring 38046  df-dveca 38292  df-disoa 38318  df-dvech 38368  df-dib 38428  df-dic 38462  df-dih 38518  df-doch 38637  df-djh 38684
This theorem is referenced by:  lcfrlem27  38858  lcfrlem37  38868
  Copyright terms: Public domain W3C validator