Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaprnlem4N Structured version   Visualization version   GIF version

Theorem hdmaprnlem4N 41892
Description: Part of proof of part 12 in [Baer] p. 49 line 19. (T* =) (Ft)* = Gs. (Contributed by NM, 27-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmaprnlem1.h 𝐻 = (LHyp‘𝐾)
hdmaprnlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaprnlem1.v 𝑉 = (Base‘𝑈)
hdmaprnlem1.n 𝑁 = (LSpan‘𝑈)
hdmaprnlem1.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmaprnlem1.l 𝐿 = (LSpan‘𝐶)
hdmaprnlem1.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmaprnlem1.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaprnlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaprnlem1.se (𝜑𝑠 ∈ (𝐷 ∖ {𝑄}))
hdmaprnlem1.ve (𝜑𝑣𝑉)
hdmaprnlem1.e (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
hdmaprnlem1.ue (𝜑𝑢𝑉)
hdmaprnlem1.un (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣}))
hdmaprnlem1.d 𝐷 = (Base‘𝐶)
hdmaprnlem1.q 𝑄 = (0g𝐶)
hdmaprnlem1.o 0 = (0g𝑈)
hdmaprnlem1.a = (+g𝐶)
hdmaprnlem1.t2 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
Assertion
Ref Expression
hdmaprnlem4N (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠}))

Proof of Theorem hdmaprnlem4N
StepHypRef Expression
1 eqid 2731 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
2 hdmaprnlem1.n . . . . 5 𝑁 = (LSpan‘𝑈)
3 hdmaprnlem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
4 hdmaprnlem1.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 hdmaprnlem1.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
63, 4, 5dvhlmod 41149 . . . . 5 (𝜑𝑈 ∈ LMod)
7 hdmaprnlem1.ve . . . . . 6 (𝜑𝑣𝑉)
8 hdmaprnlem1.v . . . . . . 7 𝑉 = (Base‘𝑈)
98, 1, 2lspsncl 20905 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
106, 7, 9syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈))
11 hdmaprnlem1.t2 . . . . . 6 (𝜑𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 }))
1211eldifad 3909 . . . . 5 (𝜑𝑡 ∈ (𝑁‘{𝑣}))
131, 2, 6, 10, 12ellspsn5 20924 . . . 4 (𝜑 → (𝑁‘{𝑡}) ⊆ (𝑁‘{𝑣}))
14 hdmaprnlem1.o . . . . 5 0 = (0g𝑈)
153, 4, 5dvhlvec 41148 . . . . 5 (𝜑𝑈 ∈ LVec)
168, 1lss1 20866 . . . . . . . . 9 (𝑈 ∈ LMod → 𝑉 ∈ (LSubSp‘𝑈))
176, 16syl 17 . . . . . . . 8 (𝜑𝑉 ∈ (LSubSp‘𝑈))
181, 2, 6, 17, 7ellspsn5 20924 . . . . . . 7 (𝜑 → (𝑁‘{𝑣}) ⊆ 𝑉)
1918ssdifd 4090 . . . . . 6 (𝜑 → ((𝑁‘{𝑣}) ∖ { 0 }) ⊆ (𝑉 ∖ { 0 }))
2019, 11sseldd 3930 . . . . 5 (𝜑𝑡 ∈ (𝑉 ∖ { 0 }))
218, 14, 2, 15, 20, 7lspsncmp 21048 . . . 4 (𝜑 → ((𝑁‘{𝑡}) ⊆ (𝑁‘{𝑣}) ↔ (𝑁‘{𝑡}) = (𝑁‘{𝑣})))
2213, 21mpbid 232 . . 3 (𝜑 → (𝑁‘{𝑡}) = (𝑁‘{𝑣}))
2322fveq2d 6821 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝑀‘(𝑁‘{𝑣})))
24 hdmaprnlem1.e . 2 (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠}))
2523, 24eqtrd 2766 1 (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  cdif 3894  wss 3897  {csn 4571  cfv 6476  Basecbs 17115  +gcplusg 17156  0gc0g 17338  LModclmod 20788  LSubSpclss 20859  LSpanclspn 20899  HLchlt 39389  LHypclh 40023  DVecHcdvh 41117  LCDualclcd 41625  mapdcmpd 41663  HDMapchdma 41831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-riotaBAD 38992
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-undef 8198  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-0g 17340  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-drng 20641  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lvec 21032  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539  df-lines 39540  df-psubsp 39542  df-pmap 39543  df-padd 39835  df-lhyp 40027  df-laut 40028  df-ldil 40143  df-ltrn 40144  df-trl 40198  df-tendo 40794  df-edring 40796  df-dvech 41118
This theorem is referenced by:  hdmaprnlem8N  41895  hdmaprnlem9N  41896
  Copyright terms: Public domain W3C validator