![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaprnlem4N | Structured version Visualization version GIF version |
Description: Part of proof of part 12 in [Baer] p. 49 line 19. (T* =) (Ft)* = Gs. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmaprnlem1.h | β’ π» = (LHypβπΎ) |
hdmaprnlem1.u | β’ π = ((DVecHβπΎ)βπ) |
hdmaprnlem1.v | β’ π = (Baseβπ) |
hdmaprnlem1.n | β’ π = (LSpanβπ) |
hdmaprnlem1.c | β’ πΆ = ((LCDualβπΎ)βπ) |
hdmaprnlem1.l | β’ πΏ = (LSpanβπΆ) |
hdmaprnlem1.m | β’ π = ((mapdβπΎ)βπ) |
hdmaprnlem1.s | β’ π = ((HDMapβπΎ)βπ) |
hdmaprnlem1.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmaprnlem1.se | β’ (π β π β (π· β {π})) |
hdmaprnlem1.ve | β’ (π β π£ β π) |
hdmaprnlem1.e | β’ (π β (πβ(πβ{π£})) = (πΏβ{π })) |
hdmaprnlem1.ue | β’ (π β π’ β π) |
hdmaprnlem1.un | β’ (π β Β¬ π’ β (πβ{π£})) |
hdmaprnlem1.d | β’ π· = (BaseβπΆ) |
hdmaprnlem1.q | β’ π = (0gβπΆ) |
hdmaprnlem1.o | β’ 0 = (0gβπ) |
hdmaprnlem1.a | β’ β = (+gβπΆ) |
hdmaprnlem1.t2 | β’ (π β π‘ β ((πβ{π£}) β { 0 })) |
Ref | Expression |
---|---|
hdmaprnlem4N | β’ (π β (πβ(πβ{π‘})) = (πΏβ{π })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . . . 5 β’ (LSubSpβπ) = (LSubSpβπ) | |
2 | hdmaprnlem1.n | . . . . 5 β’ π = (LSpanβπ) | |
3 | hdmaprnlem1.h | . . . . . 6 β’ π» = (LHypβπΎ) | |
4 | hdmaprnlem1.u | . . . . . 6 β’ π = ((DVecHβπΎ)βπ) | |
5 | hdmaprnlem1.k | . . . . . 6 β’ (π β (πΎ β HL β§ π β π»)) | |
6 | 3, 4, 5 | dvhlmod 40635 | . . . . 5 β’ (π β π β LMod) |
7 | hdmaprnlem1.ve | . . . . . 6 β’ (π β π£ β π) | |
8 | hdmaprnlem1.v | . . . . . . 7 β’ π = (Baseβπ) | |
9 | 8, 1, 2 | lspsncl 20860 | . . . . . 6 β’ ((π β LMod β§ π£ β π) β (πβ{π£}) β (LSubSpβπ)) |
10 | 6, 7, 9 | syl2anc 582 | . . . . 5 β’ (π β (πβ{π£}) β (LSubSpβπ)) |
11 | hdmaprnlem1.t2 | . . . . . 6 β’ (π β π‘ β ((πβ{π£}) β { 0 })) | |
12 | 11 | eldifad 3953 | . . . . 5 β’ (π β π‘ β (πβ{π£})) |
13 | 1, 2, 6, 10, 12 | lspsnel5a 20879 | . . . 4 β’ (π β (πβ{π‘}) β (πβ{π£})) |
14 | hdmaprnlem1.o | . . . . 5 β’ 0 = (0gβπ) | |
15 | 3, 4, 5 | dvhlvec 40634 | . . . . 5 β’ (π β π β LVec) |
16 | 8, 1 | lss1 20821 | . . . . . . . . 9 β’ (π β LMod β π β (LSubSpβπ)) |
17 | 6, 16 | syl 17 | . . . . . . . 8 β’ (π β π β (LSubSpβπ)) |
18 | 1, 2, 6, 17, 7 | lspsnel5a 20879 | . . . . . . 7 β’ (π β (πβ{π£}) β π) |
19 | 18 | ssdifd 4134 | . . . . . 6 β’ (π β ((πβ{π£}) β { 0 }) β (π β { 0 })) |
20 | 19, 11 | sseldd 3974 | . . . . 5 β’ (π β π‘ β (π β { 0 })) |
21 | 8, 14, 2, 15, 20, 7 | lspsncmp 21003 | . . . 4 β’ (π β ((πβ{π‘}) β (πβ{π£}) β (πβ{π‘}) = (πβ{π£}))) |
22 | 13, 21 | mpbid 231 | . . 3 β’ (π β (πβ{π‘}) = (πβ{π£})) |
23 | 22 | fveq2d 6894 | . 2 β’ (π β (πβ(πβ{π‘})) = (πβ(πβ{π£}))) |
24 | hdmaprnlem1.e | . 2 β’ (π β (πβ(πβ{π£})) = (πΏβ{π })) | |
25 | 23, 24 | eqtrd 2765 | 1 β’ (π β (πβ(πβ{π‘})) = (πΏβ{π })) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β cdif 3938 β wss 3941 {csn 4625 βcfv 6543 Basecbs 17174 +gcplusg 17227 0gc0g 17415 LModclmod 20742 LSubSpclss 20814 LSpanclspn 20854 HLchlt 38874 LHypclh 39509 DVecHcdvh 40603 LCDualclcd 41111 mapdcmpd 41149 HDMapchdma 41317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-riotaBAD 38477 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-tpos 8225 df-undef 8272 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-0g 17417 df-proset 18281 df-poset 18299 df-plt 18316 df-lub 18332 df-glb 18333 df-join 18334 df-meet 18335 df-p0 18411 df-p1 18412 df-lat 18418 df-clat 18485 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18892 df-minusg 18893 df-sbg 18894 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-invr 20326 df-dvr 20339 df-drng 20625 df-lmod 20744 df-lss 20815 df-lsp 20855 df-lvec 20987 df-oposet 38700 df-ol 38702 df-oml 38703 df-covers 38790 df-ats 38791 df-atl 38822 df-cvlat 38846 df-hlat 38875 df-llines 39023 df-lplanes 39024 df-lvols 39025 df-lines 39026 df-psubsp 39028 df-pmap 39029 df-padd 39321 df-lhyp 39513 df-laut 39514 df-ldil 39629 df-ltrn 39630 df-trl 39684 df-tendo 40280 df-edring 40282 df-dvech 40604 |
This theorem is referenced by: hdmaprnlem8N 41381 hdmaprnlem9N 41382 |
Copyright terms: Public domain | W3C validator |