| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaprnlem4N | Structured version Visualization version GIF version | ||
| Description: Part of proof of part 12 in [Baer] p. 49 line 19. (T* =) (Ft)* = Gs. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hdmaprnlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmaprnlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmaprnlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmaprnlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmaprnlem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmaprnlem1.l | ⊢ 𝐿 = (LSpan‘𝐶) |
| hdmaprnlem1.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| hdmaprnlem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmaprnlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmaprnlem1.se | ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) |
| hdmaprnlem1.ve | ⊢ (𝜑 → 𝑣 ∈ 𝑉) |
| hdmaprnlem1.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) |
| hdmaprnlem1.ue | ⊢ (𝜑 → 𝑢 ∈ 𝑉) |
| hdmaprnlem1.un | ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) |
| hdmaprnlem1.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmaprnlem1.q | ⊢ 𝑄 = (0g‘𝐶) |
| hdmaprnlem1.o | ⊢ 0 = (0g‘𝑈) |
| hdmaprnlem1.a | ⊢ ✚ = (+g‘𝐶) |
| hdmaprnlem1.t2 | ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) |
| Ref | Expression |
|---|---|
| hdmaprnlem4N | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 2 | hdmaprnlem1.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 3 | hdmaprnlem1.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | hdmaprnlem1.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | hdmaprnlem1.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 6 | 3, 4, 5 | dvhlmod 41282 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 7 | hdmaprnlem1.ve | . . . . . 6 ⊢ (𝜑 → 𝑣 ∈ 𝑉) | |
| 8 | hdmaprnlem1.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑈) | |
| 9 | 8, 1, 2 | lspsncl 20919 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑣 ∈ 𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
| 10 | 6, 7, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
| 11 | hdmaprnlem1.t2 | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) | |
| 12 | 11 | eldifad 3910 | . . . . 5 ⊢ (𝜑 → 𝑡 ∈ (𝑁‘{𝑣})) |
| 13 | 1, 2, 6, 10, 12 | ellspsn5 20938 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑡}) ⊆ (𝑁‘{𝑣})) |
| 14 | hdmaprnlem1.o | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
| 15 | 3, 4, 5 | dvhlvec 41281 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 16 | 8, 1 | lss1 20880 | . . . . . . . . 9 ⊢ (𝑈 ∈ LMod → 𝑉 ∈ (LSubSp‘𝑈)) |
| 17 | 6, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ (LSubSp‘𝑈)) |
| 18 | 1, 2, 6, 17, 7 | ellspsn5 20938 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑣}) ⊆ 𝑉) |
| 19 | 18 | ssdifd 4094 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑣}) ∖ { 0 }) ⊆ (𝑉 ∖ { 0 })) |
| 20 | 19, 11 | sseldd 3931 | . . . . 5 ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) |
| 21 | 8, 14, 2, 15, 20, 7 | lspsncmp 21062 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑡}) ⊆ (𝑁‘{𝑣}) ↔ (𝑁‘{𝑡}) = (𝑁‘{𝑣}))) |
| 22 | 13, 21 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑡}) = (𝑁‘{𝑣})) |
| 23 | 22 | fveq2d 6835 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝑀‘(𝑁‘{𝑣}))) |
| 24 | hdmaprnlem1.e | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) | |
| 25 | 23, 24 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 {csn 4577 ‘cfv 6489 Basecbs 17127 +gcplusg 17168 0gc0g 17350 LModclmod 20802 LSubSpclss 20873 LSpanclspn 20913 HLchlt 39522 LHypclh 40156 DVecHcdvh 41250 LCDualclcd 41758 mapdcmpd 41796 HDMapchdma 41964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-riotaBAD 39125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-undef 8212 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-0g 17352 df-proset 18208 df-poset 18227 df-plt 18242 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 df-p0 18337 df-p1 18338 df-lat 18346 df-clat 18413 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-dvr 20328 df-drng 20655 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lvec 21046 df-oposet 39348 df-ol 39350 df-oml 39351 df-covers 39438 df-ats 39439 df-atl 39470 df-cvlat 39494 df-hlat 39523 df-llines 39670 df-lplanes 39671 df-lvols 39672 df-lines 39673 df-psubsp 39675 df-pmap 39676 df-padd 39968 df-lhyp 40160 df-laut 40161 df-ldil 40276 df-ltrn 40277 df-trl 40331 df-tendo 40927 df-edring 40929 df-dvech 41251 |
| This theorem is referenced by: hdmaprnlem8N 42028 hdmaprnlem9N 42029 |
| Copyright terms: Public domain | W3C validator |