![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaprnlem4N | Structured version Visualization version GIF version |
Description: Part of proof of part 12 in [Baer] p. 49 line 19. (T* =) (Ft)* = Gs. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmaprnlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmaprnlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmaprnlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmaprnlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmaprnlem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmaprnlem1.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmaprnlem1.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmaprnlem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmaprnlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmaprnlem1.se | ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) |
hdmaprnlem1.ve | ⊢ (𝜑 → 𝑣 ∈ 𝑉) |
hdmaprnlem1.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) |
hdmaprnlem1.ue | ⊢ (𝜑 → 𝑢 ∈ 𝑉) |
hdmaprnlem1.un | ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) |
hdmaprnlem1.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmaprnlem1.q | ⊢ 𝑄 = (0g‘𝐶) |
hdmaprnlem1.o | ⊢ 0 = (0g‘𝑈) |
hdmaprnlem1.a | ⊢ ✚ = (+g‘𝐶) |
hdmaprnlem1.t2 | ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) |
Ref | Expression |
---|---|
hdmaprnlem4N | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
2 | hdmaprnlem1.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
3 | hdmaprnlem1.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | hdmaprnlem1.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | hdmaprnlem1.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 3, 4, 5 | dvhlmod 37185 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
7 | hdmaprnlem1.ve | . . . . . 6 ⊢ (𝜑 → 𝑣 ∈ 𝑉) | |
8 | hdmaprnlem1.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑈) | |
9 | 8, 1, 2 | lspsncl 19336 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑣 ∈ 𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
10 | 6, 7, 9 | syl2anc 581 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
11 | hdmaprnlem1.t2 | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) | |
12 | 11 | eldifad 3810 | . . . . 5 ⊢ (𝜑 → 𝑡 ∈ (𝑁‘{𝑣})) |
13 | 1, 2, 6, 10, 12 | lspsnel5a 19355 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑡}) ⊆ (𝑁‘{𝑣})) |
14 | hdmaprnlem1.o | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
15 | 3, 4, 5 | dvhlvec 37184 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LVec) |
16 | 8, 1 | lss1 19295 | . . . . . . . . 9 ⊢ (𝑈 ∈ LMod → 𝑉 ∈ (LSubSp‘𝑈)) |
17 | 6, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ (LSubSp‘𝑈)) |
18 | 1, 2, 6, 17, 7 | lspsnel5a 19355 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑣}) ⊆ 𝑉) |
19 | 18 | ssdifd 3973 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑣}) ∖ { 0 }) ⊆ (𝑉 ∖ { 0 })) |
20 | 19, 11 | sseldd 3828 | . . . . 5 ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) |
21 | 8, 14, 2, 15, 20, 7 | lspsncmp 19475 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑡}) ⊆ (𝑁‘{𝑣}) ↔ (𝑁‘{𝑡}) = (𝑁‘{𝑣}))) |
22 | 13, 21 | mpbid 224 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑡}) = (𝑁‘{𝑣})) |
23 | 22 | fveq2d 6437 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝑀‘(𝑁‘{𝑣}))) |
24 | hdmaprnlem1.e | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) | |
25 | 23, 24 | eqtrd 2861 | 1 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∖ cdif 3795 ⊆ wss 3798 {csn 4397 ‘cfv 6123 Basecbs 16222 +gcplusg 16305 0gc0g 16453 LModclmod 19219 LSubSpclss 19288 LSpanclspn 19330 HLchlt 35425 LHypclh 36059 DVecHcdvh 37153 LCDualclcd 37661 mapdcmpd 37699 HDMapchdma 37867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-riotaBAD 35028 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-tpos 7617 df-undef 7664 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-5 11417 df-6 11418 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-struct 16224 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-ress 16230 df-plusg 16318 df-mulr 16319 df-sca 16321 df-vsca 16322 df-0g 16455 df-proset 17281 df-poset 17299 df-plt 17311 df-lub 17327 df-glb 17328 df-join 17329 df-meet 17330 df-p0 17392 df-p1 17393 df-lat 17399 df-clat 17461 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-grp 17779 df-minusg 17780 df-sbg 17781 df-mgp 18844 df-ur 18856 df-ring 18903 df-oppr 18977 df-dvdsr 18995 df-unit 18996 df-invr 19026 df-dvr 19037 df-drng 19105 df-lmod 19221 df-lss 19289 df-lsp 19331 df-lvec 19462 df-oposet 35251 df-ol 35253 df-oml 35254 df-covers 35341 df-ats 35342 df-atl 35373 df-cvlat 35397 df-hlat 35426 df-llines 35573 df-lplanes 35574 df-lvols 35575 df-lines 35576 df-psubsp 35578 df-pmap 35579 df-padd 35871 df-lhyp 36063 df-laut 36064 df-ldil 36179 df-ltrn 36180 df-trl 36234 df-tendo 36830 df-edring 36832 df-dvech 37154 |
This theorem is referenced by: hdmaprnlem8N 37931 hdmaprnlem9N 37932 |
Copyright terms: Public domain | W3C validator |