![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendopl2 | Structured version Visualization version GIF version |
Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.) |
Ref | Expression |
---|---|
tendoplcbv.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
tendopl2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendopl2 | ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoplcbv.p | . . . 4 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
2 | tendopl2.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | 1, 2 | tendopl 40289 | . . 3 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
4 | 3 | 3adant3 1129 | . 2 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
5 | fveq2 6902 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑈‘𝑔) = (𝑈‘𝐹)) | |
6 | fveq2 6902 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑉‘𝑔) = (𝑉‘𝐹)) | |
7 | 5, 6 | coeq12d 5871 | . . 3 ⊢ (𝑔 = 𝐹 → ((𝑈‘𝑔) ∘ (𝑉‘𝑔)) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
8 | 7 | adantl 480 | . 2 ⊢ (((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 = 𝐹) → ((𝑈‘𝑔) ∘ (𝑉‘𝑔)) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
9 | simp3 1135 | . 2 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
10 | fvex 6915 | . . . 4 ⊢ (𝑈‘𝐹) ∈ V | |
11 | fvex 6915 | . . . 4 ⊢ (𝑉‘𝐹) ∈ V | |
12 | 10, 11 | coex 7946 | . . 3 ⊢ ((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∈ V |
13 | 12 | a1i 11 | . 2 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∈ V) |
14 | 4, 8, 9, 13 | fvmptd 7017 | 1 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ↦ cmpt 5235 ∘ ccom 5686 ‘cfv 6553 (class class class)co 7426 ∈ cmpo 7428 LTrncltrn 39614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 |
This theorem is referenced by: tendoplcl2 40291 tendoplco2 40292 tendopltp 40293 tendoplcom 40295 tendoplass 40296 tendodi1 40297 tendodi2 40298 tendo0pl 40304 tendoipl 40310 tendospdi2 40535 |
Copyright terms: Public domain | W3C validator |