Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendopl2 Structured version   Visualization version   GIF version

Theorem tendopl2 40824
Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendoplcbv.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendopl2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
tendopl2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendopl2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoplcbv.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
2 tendopl2.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2tendopl 40823 . . 3 ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
433adant3 1132 . 2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
5 fveq2 6822 . . . 4 (𝑔 = 𝐹 → (𝑈𝑔) = (𝑈𝐹))
6 fveq2 6822 . . . 4 (𝑔 = 𝐹 → (𝑉𝑔) = (𝑉𝐹))
75, 6coeq12d 5803 . . 3 (𝑔 = 𝐹 → ((𝑈𝑔) ∘ (𝑉𝑔)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
87adantl 481 . 2 (((𝑈𝐸𝑉𝐸𝐹𝑇) ∧ 𝑔 = 𝐹) → ((𝑈𝑔) ∘ (𝑉𝑔)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
9 simp3 1138 . 2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → 𝐹𝑇)
10 fvex 6835 . . . 4 (𝑈𝐹) ∈ V
11 fvex 6835 . . . 4 (𝑉𝐹) ∈ V
1210, 11coex 7860 . . 3 ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V
1312a1i 11 . 2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V)
144, 8, 9, 13fvmptd 6936 1 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5170  ccom 5618  cfv 6481  (class class class)co 7346  cmpo 7348  LTrncltrn 40148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  tendoplcl2  40825  tendoplco2  40826  tendopltp  40827  tendoplcom  40829  tendoplass  40830  tendodi1  40831  tendodi2  40832  tendo0pl  40838  tendoipl  40844  tendospdi2  41069
  Copyright terms: Public domain W3C validator