![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendopl2 | Structured version Visualization version GIF version |
Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.) |
Ref | Expression |
---|---|
tendoplcbv.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
tendopl2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendopl2 | ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoplcbv.p | . . . 4 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
2 | tendopl2.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | 1, 2 | tendopl 36930 | . . 3 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
4 | 3 | 3adant3 1123 | . 2 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
5 | fveq2 6446 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑈‘𝑔) = (𝑈‘𝐹)) | |
6 | fveq2 6446 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑉‘𝑔) = (𝑉‘𝐹)) | |
7 | 5, 6 | coeq12d 5532 | . . 3 ⊢ (𝑔 = 𝐹 → ((𝑈‘𝑔) ∘ (𝑉‘𝑔)) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
8 | 7 | adantl 475 | . 2 ⊢ (((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 = 𝐹) → ((𝑈‘𝑔) ∘ (𝑉‘𝑔)) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
9 | simp3 1129 | . 2 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
10 | fvex 6459 | . . . 4 ⊢ (𝑈‘𝐹) ∈ V | |
11 | fvex 6459 | . . . 4 ⊢ (𝑉‘𝐹) ∈ V | |
12 | 10, 11 | coex 7397 | . . 3 ⊢ ((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∈ V |
13 | 12 | a1i 11 | . 2 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∈ V) |
14 | 4, 8, 9, 13 | fvmptd 6548 | 1 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ↦ cmpt 4965 ∘ ccom 5359 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 LTrncltrn 36255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 |
This theorem is referenced by: tendoplcl2 36932 tendoplco2 36933 tendopltp 36934 tendoplcom 36936 tendoplass 36937 tendodi1 36938 tendodi2 36939 tendo0pl 36945 tendoipl 36951 tendospdi2 37176 |
Copyright terms: Public domain | W3C validator |