| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendopl2 | Structured version Visualization version GIF version | ||
| Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendoplcbv.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
| tendopl2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| tendopl2 | ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendoplcbv.p | . . . 4 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
| 2 | tendopl2.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | 1, 2 | tendopl 40737 | . . 3 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
| 5 | fveq2 6886 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑈‘𝑔) = (𝑈‘𝐹)) | |
| 6 | fveq2 6886 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑉‘𝑔) = (𝑉‘𝐹)) | |
| 7 | 5, 6 | coeq12d 5855 | . . 3 ⊢ (𝑔 = 𝐹 → ((𝑈‘𝑔) ∘ (𝑉‘𝑔)) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
| 8 | 7 | adantl 481 | . 2 ⊢ (((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 = 𝐹) → ((𝑈‘𝑔) ∘ (𝑉‘𝑔)) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
| 9 | simp3 1138 | . 2 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
| 10 | fvex 6899 | . . . 4 ⊢ (𝑈‘𝐹) ∈ V | |
| 11 | fvex 6899 | . . . 4 ⊢ (𝑉‘𝐹) ∈ V | |
| 12 | 10, 11 | coex 7934 | . . 3 ⊢ ((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∈ V |
| 13 | 12 | a1i 11 | . 2 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∈ V) |
| 14 | 4, 8, 9, 13 | fvmptd 7003 | 1 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ↦ cmpt 5205 ∘ ccom 5669 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 LTrncltrn 40062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 |
| This theorem is referenced by: tendoplcl2 40739 tendoplco2 40740 tendopltp 40741 tendoplcom 40743 tendoplass 40744 tendodi1 40745 tendodi2 40746 tendo0pl 40752 tendoipl 40758 tendospdi2 40983 |
| Copyright terms: Public domain | W3C validator |