Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendopl2 Structured version   Visualization version   GIF version

Theorem tendopl2 39648
Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendoplcbv.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendopl2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
tendopl2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendopl2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoplcbv.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
2 tendopl2.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2tendopl 39647 . . 3 ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
433adant3 1133 . 2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
5 fveq2 6892 . . . 4 (𝑔 = 𝐹 → (𝑈𝑔) = (𝑈𝐹))
6 fveq2 6892 . . . 4 (𝑔 = 𝐹 → (𝑉𝑔) = (𝑉𝐹))
75, 6coeq12d 5865 . . 3 (𝑔 = 𝐹 → ((𝑈𝑔) ∘ (𝑉𝑔)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
87adantl 483 . 2 (((𝑈𝐸𝑉𝐸𝐹𝑇) ∧ 𝑔 = 𝐹) → ((𝑈𝑔) ∘ (𝑉𝑔)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
9 simp3 1139 . 2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → 𝐹𝑇)
10 fvex 6905 . . . 4 (𝑈𝐹) ∈ V
11 fvex 6905 . . . 4 (𝑉𝐹) ∈ V
1210, 11coex 7921 . . 3 ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V
1312a1i 11 . 2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V)
144, 8, 9, 13fvmptd 7006 1 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3475  cmpt 5232  ccom 5681  cfv 6544  (class class class)co 7409  cmpo 7411  LTrncltrn 38972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414
This theorem is referenced by:  tendoplcl2  39649  tendoplco2  39650  tendopltp  39651  tendoplcom  39653  tendoplass  39654  tendodi1  39655  tendodi2  39656  tendo0pl  39662  tendoipl  39668  tendospdi2  39893
  Copyright terms: Public domain W3C validator