| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendopl2 | Structured version Visualization version GIF version | ||
| Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendoplcbv.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
| tendopl2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| tendopl2 | ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendoplcbv.p | . . . 4 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
| 2 | tendopl2.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | 1, 2 | tendopl 40743 | . . 3 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
| 5 | fveq2 6840 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑈‘𝑔) = (𝑈‘𝐹)) | |
| 6 | fveq2 6840 | . . . 4 ⊢ (𝑔 = 𝐹 → (𝑉‘𝑔) = (𝑉‘𝐹)) | |
| 7 | 5, 6 | coeq12d 5818 | . . 3 ⊢ (𝑔 = 𝐹 → ((𝑈‘𝑔) ∘ (𝑉‘𝑔)) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
| 8 | 7 | adantl 481 | . 2 ⊢ (((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) ∧ 𝑔 = 𝐹) → ((𝑈‘𝑔) ∘ (𝑉‘𝑔)) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
| 9 | simp3 1138 | . 2 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝑇) | |
| 10 | fvex 6853 | . . . 4 ⊢ (𝑈‘𝐹) ∈ V | |
| 11 | fvex 6853 | . . . 4 ⊢ (𝑉‘𝐹) ∈ V | |
| 12 | 10, 11 | coex 7886 | . . 3 ⊢ ((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∈ V |
| 13 | 12 | a1i 11 | . 2 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∈ V) |
| 14 | 4, 8, 9, 13 | fvmptd 6957 | 1 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ↦ cmpt 5183 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 LTrncltrn 40068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 |
| This theorem is referenced by: tendoplcl2 40745 tendoplco2 40746 tendopltp 40747 tendoplcom 40749 tendoplass 40750 tendodi1 40751 tendodi2 40752 tendo0pl 40758 tendoipl 40764 tendospdi2 40989 |
| Copyright terms: Public domain | W3C validator |