Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendopl2 Structured version   Visualization version   GIF version

Theorem tendopl2 40744
Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendoplcbv.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendopl2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
tendopl2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendopl2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoplcbv.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
2 tendopl2.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2tendopl 40743 . . 3 ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
433adant3 1132 . 2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
5 fveq2 6840 . . . 4 (𝑔 = 𝐹 → (𝑈𝑔) = (𝑈𝐹))
6 fveq2 6840 . . . 4 (𝑔 = 𝐹 → (𝑉𝑔) = (𝑉𝐹))
75, 6coeq12d 5818 . . 3 (𝑔 = 𝐹 → ((𝑈𝑔) ∘ (𝑉𝑔)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
87adantl 481 . 2 (((𝑈𝐸𝑉𝐸𝐹𝑇) ∧ 𝑔 = 𝐹) → ((𝑈𝑔) ∘ (𝑉𝑔)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
9 simp3 1138 . 2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → 𝐹𝑇)
10 fvex 6853 . . . 4 (𝑈𝐹) ∈ V
11 fvex 6853 . . . 4 (𝑉𝐹) ∈ V
1210, 11coex 7886 . . 3 ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V
1312a1i 11 . 2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V)
144, 8, 9, 13fvmptd 6957 1 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  cmpt 5183  ccom 5635  cfv 6499  (class class class)co 7369  cmpo 7371  LTrncltrn 40068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374
This theorem is referenced by:  tendoplcl2  40745  tendoplco2  40746  tendopltp  40747  tendoplcom  40749  tendoplass  40750  tendodi1  40751  tendodi2  40752  tendo0pl  40758  tendoipl  40764  tendospdi2  40989
  Copyright terms: Public domain W3C validator