Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendopl2 Structured version   Visualization version   GIF version

Theorem tendopl2 38018
Description: Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendoplcbv.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendopl2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
tendopl2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐹(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendopl2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 tendoplcbv.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
2 tendopl2.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2tendopl 38017 . . 3 ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
433adant3 1129 . 2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
5 fveq2 6661 . . . 4 (𝑔 = 𝐹 → (𝑈𝑔) = (𝑈𝐹))
6 fveq2 6661 . . . 4 (𝑔 = 𝐹 → (𝑉𝑔) = (𝑉𝐹))
75, 6coeq12d 5722 . . 3 (𝑔 = 𝐹 → ((𝑈𝑔) ∘ (𝑉𝑔)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
87adantl 485 . 2 (((𝑈𝐸𝑉𝐸𝐹𝑇) ∧ 𝑔 = 𝐹) → ((𝑈𝑔) ∘ (𝑉𝑔)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
9 simp3 1135 . 2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → 𝐹𝑇)
10 fvex 6674 . . . 4 (𝑈𝐹) ∈ V
11 fvex 6674 . . . 4 (𝑉𝐹) ∈ V
1210, 11coex 7630 . . 3 ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V
1312a1i 11 . 2 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V)
144, 8, 9, 13fvmptd 6766 1 ((𝑈𝐸𝑉𝐸𝐹𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2115  Vcvv 3480  cmpt 5132  ccom 5546  cfv 6343  (class class class)co 7149  cmpo 7151  LTrncltrn 37342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154
This theorem is referenced by:  tendoplcl2  38019  tendoplco2  38020  tendopltp  38021  tendoplcom  38023  tendoplass  38024  tendodi1  38025  tendodi2  38026  tendo0pl  38032  tendoipl  38038  tendospdi2  38263
  Copyright terms: Public domain W3C validator