Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplcl Structured version   Visualization version   GIF version

Theorem tendoplcl 37904
Description: Endomorphism sum is a trace-preserving endomorphism. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendoplcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) ∈ 𝐸)
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendoplcl
Dummy variables 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2819 . 2 (le‘𝐾) = (le‘𝐾)
2 tendopl.h . 2 𝐻 = (LHyp‘𝐾)
3 tendopl.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2819 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendopl.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 simp1 1130 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simpl1 1185 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simpl2 1186 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → 𝑈𝐸)
9 simpr 487 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → 𝑔𝑇)
102, 3, 5tendocl 37890 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑔𝑇) → (𝑈𝑔) ∈ 𝑇)
117, 8, 9, 10syl3anc 1365 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → (𝑈𝑔) ∈ 𝑇)
12 simpl3 1187 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → 𝑉𝐸)
132, 3, 5tendocl 37890 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
147, 12, 9, 13syl3anc 1365 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
152, 3ltrnco 37842 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝑔) ∈ 𝑇 ∧ (𝑉𝑔) ∈ 𝑇) → ((𝑈𝑔) ∘ (𝑉𝑔)) ∈ 𝑇)
167, 11, 14, 15syl3anc 1365 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → ((𝑈𝑔) ∘ (𝑉𝑔)) ∈ 𝑇)
1716fmpttd 6872 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))):𝑇𝑇)
18 tendopl.p . . . . . 6 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
1918, 3tendopl 37899 . . . . 5 ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
20193adant1 1124 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
2120feq1d 6492 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → ((𝑈𝑃𝑉):𝑇𝑇 ↔ (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))):𝑇𝑇))
2217, 21mpbird 259 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉):𝑇𝑇)
23 simp11 1197 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 simp12 1198 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → 𝑈𝐸)
25 simp13 1199 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → 𝑉𝐸)
26 3simpc 1144 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → (𝑇𝑖𝑇))
272, 3, 5, 18tendoplco2 37902 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑇𝑖𝑇)) → ((𝑈𝑃𝑉)‘(𝑖)) = (((𝑈𝑃𝑉)‘) ∘ ((𝑈𝑃𝑉)‘𝑖)))
2823, 24, 25, 26, 27syl121anc 1369 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → ((𝑈𝑃𝑉)‘(𝑖)) = (((𝑈𝑃𝑉)‘) ∘ ((𝑈𝑃𝑉)‘𝑖)))
29 simpl1 1185 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simpl2 1186 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → 𝑈𝐸)
31 simpl3 1187 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → 𝑉𝐸)
32 simpr 487 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → 𝑇)
332, 3, 5, 18, 1, 4tendopltp 37903 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑇) → (((trL‘𝐾)‘𝑊)‘((𝑈𝑃𝑉)‘))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘))
3429, 30, 31, 32, 33syl121anc 1369 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → (((trL‘𝐾)‘𝑊)‘((𝑈𝑃𝑉)‘))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘))
351, 2, 3, 4, 5, 6, 22, 28, 34istendod 37885 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5057  cmpt 5137  ccom 5552  wf 6344  cfv 6348  (class class class)co 7148  cmpo 7150  lecple 16564  HLchlt 36473  LHypclh 37107  LTrncltrn 37224  trLctrl 37281  TEndoctendo 37875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-riotaBAD 36076
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-undef 7931  df-map 8400  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36299  df-ol 36301  df-oml 36302  df-covers 36389  df-ats 36390  df-atl 36421  df-cvlat 36445  df-hlat 36474  df-llines 36621  df-lplanes 36622  df-lvols 36623  df-lines 36624  df-psubsp 36626  df-pmap 36627  df-padd 36919  df-lhyp 37111  df-laut 37112  df-ldil 37227  df-ltrn 37228  df-trl 37282  df-tendo 37878
This theorem is referenced by:  tendoplcom  37905  tendoplass  37906  tendodi1  37907  tendodi2  37908  tendo0pl  37914  tendoipl  37920  erngdvlem1  38111  erngdvlem3  38113  erngdvlem1-rN  38119  erngdvlem3-rN  38121  dvalveclem  38148  dvhvaddcl  38218  dicvaddcl  38313
  Copyright terms: Public domain W3C validator