Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplcl Structured version   Visualization version   GIF version

Theorem tendoplcl 40782
Description: Endomorphism sum is a trace-preserving endomorphism. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendoplcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) ∈ 𝐸)
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendoplcl
Dummy variables 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (le‘𝐾) = (le‘𝐾)
2 tendopl.h . 2 𝐻 = (LHyp‘𝐾)
3 tendopl.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2730 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendopl.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 simp1 1136 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simpl2 1193 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → 𝑈𝐸)
9 simpr 484 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → 𝑔𝑇)
102, 3, 5tendocl 40768 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑔𝑇) → (𝑈𝑔) ∈ 𝑇)
117, 8, 9, 10syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → (𝑈𝑔) ∈ 𝑇)
12 simpl3 1194 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → 𝑉𝐸)
132, 3, 5tendocl 40768 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
147, 12, 9, 13syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
152, 3ltrnco 40720 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝑔) ∈ 𝑇 ∧ (𝑉𝑔) ∈ 𝑇) → ((𝑈𝑔) ∘ (𝑉𝑔)) ∈ 𝑇)
167, 11, 14, 15syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → ((𝑈𝑔) ∘ (𝑉𝑔)) ∈ 𝑇)
1716fmpttd 7090 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))):𝑇𝑇)
18 tendopl.p . . . . . 6 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
1918, 3tendopl 40777 . . . . 5 ((𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
20193adant1 1130 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))))
2120feq1d 6673 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → ((𝑈𝑃𝑉):𝑇𝑇 ↔ (𝑔𝑇 ↦ ((𝑈𝑔) ∘ (𝑉𝑔))):𝑇𝑇))
2217, 21mpbird 257 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉):𝑇𝑇)
23 simp11 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 simp12 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → 𝑈𝐸)
25 simp13 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → 𝑉𝐸)
26 3simpc 1150 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → (𝑇𝑖𝑇))
272, 3, 5, 18tendoplco2 40780 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ (𝑇𝑖𝑇)) → ((𝑈𝑃𝑉)‘(𝑖)) = (((𝑈𝑃𝑉)‘) ∘ ((𝑈𝑃𝑉)‘𝑖)))
2823, 24, 25, 26, 27syl121anc 1377 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇𝑖𝑇) → ((𝑈𝑃𝑉)‘(𝑖)) = (((𝑈𝑃𝑉)‘) ∘ ((𝑈𝑃𝑉)‘𝑖)))
29 simpl1 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simpl2 1193 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → 𝑈𝐸)
31 simpl3 1194 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → 𝑉𝐸)
32 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → 𝑇)
332, 3, 5, 18, 1, 4tendopltp 40781 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑇) → (((trL‘𝐾)‘𝑊)‘((𝑈𝑃𝑉)‘))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘))
3429, 30, 31, 32, 33syl121anc 1377 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑇) → (((trL‘𝐾)‘𝑊)‘((𝑈𝑃𝑉)‘))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘))
351, 2, 3, 4, 5, 6, 22, 28, 34istendod 40763 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cmpt 5191  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  lecple 17234  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  trLctrl 40159  TEndoctendo 40753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-undef 8255  df-map 8804  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tendo 40756
This theorem is referenced by:  tendoplcom  40783  tendoplass  40784  tendodi1  40785  tendodi2  40786  tendo0pl  40792  tendoipl  40798  erngdvlem1  40989  erngdvlem3  40991  erngdvlem1-rN  40997  erngdvlem3-rN  40999  dvalveclem  41026  dvhvaddcl  41096  dicvaddcl  41191
  Copyright terms: Public domain W3C validator