Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplcl Structured version   Visualization version   GIF version

Theorem tendoplcl 39652
Description: Endomorphism sum is a trace-preserving endomorphism. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHypβ€˜πΎ)
tendopl.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendopl.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
tendopl.p 𝑃 = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
Assertion
Ref Expression
tendoplcl (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) β†’ (π‘ˆπ‘ƒπ‘‰) ∈ 𝐸)
Distinct variable groups:   𝑑,𝑠,𝐸   𝑓,𝑠,𝑑,𝑇   𝑓,π‘Š,𝑠,𝑑
Allowed substitution hints:   𝑃(𝑑,𝑓,𝑠)   π‘ˆ(𝑑,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑑,𝑓,𝑠)   𝐾(𝑑,𝑓,𝑠)   𝑉(𝑑,𝑓,𝑠)

Proof of Theorem tendoplcl
Dummy variables 𝑔 β„Ž 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 (leβ€˜πΎ) = (leβ€˜πΎ)
2 tendopl.h . 2 𝐻 = (LHypβ€˜πΎ)
3 tendopl.t . 2 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
4 eqid 2733 . 2 ((trLβ€˜πΎ)β€˜π‘Š) = ((trLβ€˜πΎ)β€˜π‘Š)
5 tendopl.e . 2 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
6 simp1 1137 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
7 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
8 simpl2 1193 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ π‘ˆ ∈ 𝐸)
9 simpr 486 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ 𝑔 ∈ 𝑇)
102, 3, 5tendocl 39638 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) β†’ (π‘ˆβ€˜π‘”) ∈ 𝑇)
117, 8, 9, 10syl3anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (π‘ˆβ€˜π‘”) ∈ 𝑇)
12 simpl3 1194 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ 𝑉 ∈ 𝐸)
132, 3, 5tendocl 39638 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑉 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) β†’ (π‘‰β€˜π‘”) ∈ 𝑇)
147, 12, 9, 13syl3anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (π‘‰β€˜π‘”) ∈ 𝑇)
152, 3ltrnco 39590 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆβ€˜π‘”) ∈ 𝑇 ∧ (π‘‰β€˜π‘”) ∈ 𝑇) β†’ ((π‘ˆβ€˜π‘”) ∘ (π‘‰β€˜π‘”)) ∈ 𝑇)
167, 11, 14, 15syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ ((π‘ˆβ€˜π‘”) ∘ (π‘‰β€˜π‘”)) ∈ 𝑇)
1716fmpttd 7115 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) β†’ (𝑔 ∈ 𝑇 ↦ ((π‘ˆβ€˜π‘”) ∘ (π‘‰β€˜π‘”))):π‘‡βŸΆπ‘‡)
18 tendopl.p . . . . . 6 𝑃 = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
1918, 3tendopl 39647 . . . . 5 ((π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) β†’ (π‘ˆπ‘ƒπ‘‰) = (𝑔 ∈ 𝑇 ↦ ((π‘ˆβ€˜π‘”) ∘ (π‘‰β€˜π‘”))))
20193adant1 1131 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) β†’ (π‘ˆπ‘ƒπ‘‰) = (𝑔 ∈ 𝑇 ↦ ((π‘ˆβ€˜π‘”) ∘ (π‘‰β€˜π‘”))))
2120feq1d 6703 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) β†’ ((π‘ˆπ‘ƒπ‘‰):π‘‡βŸΆπ‘‡ ↔ (𝑔 ∈ 𝑇 ↦ ((π‘ˆβ€˜π‘”) ∘ (π‘‰β€˜π‘”))):π‘‡βŸΆπ‘‡))
2217, 21mpbird 257 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) β†’ (π‘ˆπ‘ƒπ‘‰):π‘‡βŸΆπ‘‡)
23 simp11 1204 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ β„Ž ∈ 𝑇 ∧ 𝑖 ∈ 𝑇) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
24 simp12 1205 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ β„Ž ∈ 𝑇 ∧ 𝑖 ∈ 𝑇) β†’ π‘ˆ ∈ 𝐸)
25 simp13 1206 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ β„Ž ∈ 𝑇 ∧ 𝑖 ∈ 𝑇) β†’ 𝑉 ∈ 𝐸)
26 3simpc 1151 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ β„Ž ∈ 𝑇 ∧ 𝑖 ∈ 𝑇) β†’ (β„Ž ∈ 𝑇 ∧ 𝑖 ∈ 𝑇))
272, 3, 5, 18tendoplco2 39650 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (β„Ž ∈ 𝑇 ∧ 𝑖 ∈ 𝑇)) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜(β„Ž ∘ 𝑖)) = (((π‘ˆπ‘ƒπ‘‰)β€˜β„Ž) ∘ ((π‘ˆπ‘ƒπ‘‰)β€˜π‘–)))
2823, 24, 25, 26, 27syl121anc 1376 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ β„Ž ∈ 𝑇 ∧ 𝑖 ∈ 𝑇) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜(β„Ž ∘ 𝑖)) = (((π‘ˆπ‘ƒπ‘‰)β€˜β„Ž) ∘ ((π‘ˆπ‘ƒπ‘‰)β€˜π‘–)))
29 simpl1 1192 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ β„Ž ∈ 𝑇) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
30 simpl2 1193 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ β„Ž ∈ 𝑇) β†’ π‘ˆ ∈ 𝐸)
31 simpl3 1194 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ β„Ž ∈ 𝑇) β†’ 𝑉 ∈ 𝐸)
32 simpr 486 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ β„Ž ∈ 𝑇) β†’ β„Ž ∈ 𝑇)
332, 3, 5, 18, 1, 4tendopltp 39651 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ β„Ž ∈ 𝑇) β†’ (((trLβ€˜πΎ)β€˜π‘Š)β€˜((π‘ˆπ‘ƒπ‘‰)β€˜β„Ž))(leβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜β„Ž))
3429, 30, 31, 32, 33syl121anc 1376 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ β„Ž ∈ 𝑇) β†’ (((trLβ€˜πΎ)β€˜π‘Š)β€˜((π‘ˆπ‘ƒπ‘‰)β€˜β„Ž))(leβ€˜πΎ)(((trLβ€˜πΎ)β€˜π‘Š)β€˜β„Ž))
351, 2, 3, 4, 5, 6, 22, 28, 34istendod 39633 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) β†’ (π‘ˆπ‘ƒπ‘‰) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5149   ↦ cmpt 5232   ∘ ccom 5681  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  lecple 17204  HLchlt 38220  LHypclh 38855  LTrncltrn 38972  trLctrl 39029  TEndoctendo 39623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-riotaBAD 37823
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-undef 8258  df-map 8822  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-p1 18379  df-lat 18385  df-clat 18452  df-oposet 38046  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-llines 38369  df-lplanes 38370  df-lvols 38371  df-lines 38372  df-psubsp 38374  df-pmap 38375  df-padd 38667  df-lhyp 38859  df-laut 38860  df-ldil 38975  df-ltrn 38976  df-trl 39030  df-tendo 39626
This theorem is referenced by:  tendoplcom  39653  tendoplass  39654  tendodi1  39655  tendodi2  39656  tendo0pl  39662  tendoipl  39668  erngdvlem1  39859  erngdvlem3  39861  erngdvlem1-rN  39867  erngdvlem3-rN  39869  dvalveclem  39896  dvhvaddcl  39966  dicvaddcl  40061
  Copyright terms: Public domain W3C validator