Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madebday Structured version   Visualization version   GIF version

Theorem madebday 33663
Description: A surreal is part of the set made by ordinal 𝐴 iff its birthday is less than or equal to 𝐴. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
madebday ((𝐴 ∈ On ∧ 𝑋 No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ( bday 𝑋) ⊆ 𝐴))

Proof of Theorem madebday
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 madebdayim 33653 . . . 4 ((𝐴 ∈ On ∧ 𝑋 ∈ ( M ‘𝐴)) → ( bday 𝑋) ⊆ 𝐴)
21ex 416 . . 3 (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) → ( bday 𝑋) ⊆ 𝐴))
32adantr 484 . 2 ((𝐴 ∈ On ∧ 𝑋 No ) → (𝑋 ∈ ( M ‘𝐴) → ( bday 𝑋) ⊆ 𝐴))
4 sseq2 3920 . . . . . . 7 (𝑎 = 𝑏 → (( bday 𝑥) ⊆ 𝑎 ↔ ( bday 𝑥) ⊆ 𝑏))
5 fveq2 6662 . . . . . . . 8 (𝑎 = 𝑏 → ( M ‘𝑎) = ( M ‘𝑏))
65eleq2d 2837 . . . . . . 7 (𝑎 = 𝑏 → (𝑥 ∈ ( M ‘𝑎) ↔ 𝑥 ∈ ( M ‘𝑏)))
74, 6imbi12d 348 . . . . . 6 (𝑎 = 𝑏 → ((( bday 𝑥) ⊆ 𝑎𝑥 ∈ ( M ‘𝑎)) ↔ (( bday 𝑥) ⊆ 𝑏𝑥 ∈ ( M ‘𝑏))))
87ralbidv 3126 . . . . 5 (𝑎 = 𝑏 → (∀𝑥 No (( bday 𝑥) ⊆ 𝑎𝑥 ∈ ( M ‘𝑎)) ↔ ∀𝑥 No (( bday 𝑥) ⊆ 𝑏𝑥 ∈ ( M ‘𝑏))))
9 fveq2 6662 . . . . . . . 8 (𝑥 = 𝑦 → ( bday 𝑥) = ( bday 𝑦))
109sseq1d 3925 . . . . . . 7 (𝑥 = 𝑦 → (( bday 𝑥) ⊆ 𝑏 ↔ ( bday 𝑦) ⊆ 𝑏))
11 eleq1 2839 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ ( M ‘𝑏) ↔ 𝑦 ∈ ( M ‘𝑏)))
1210, 11imbi12d 348 . . . . . 6 (𝑥 = 𝑦 → ((( bday 𝑥) ⊆ 𝑏𝑥 ∈ ( M ‘𝑏)) ↔ (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))))
1312cbvralvw 3361 . . . . 5 (∀𝑥 No (( bday 𝑥) ⊆ 𝑏𝑥 ∈ ( M ‘𝑏)) ↔ ∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
148, 13bitrdi 290 . . . 4 (𝑎 = 𝑏 → (∀𝑥 No (( bday 𝑥) ⊆ 𝑎𝑥 ∈ ( M ‘𝑎)) ↔ ∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))))
15 sseq2 3920 . . . . . 6 (𝑎 = 𝐴 → (( bday 𝑥) ⊆ 𝑎 ↔ ( bday 𝑥) ⊆ 𝐴))
16 fveq2 6662 . . . . . . 7 (𝑎 = 𝐴 → ( M ‘𝑎) = ( M ‘𝐴))
1716eleq2d 2837 . . . . . 6 (𝑎 = 𝐴 → (𝑥 ∈ ( M ‘𝑎) ↔ 𝑥 ∈ ( M ‘𝐴)))
1815, 17imbi12d 348 . . . . 5 (𝑎 = 𝐴 → ((( bday 𝑥) ⊆ 𝑎𝑥 ∈ ( M ‘𝑎)) ↔ (( bday 𝑥) ⊆ 𝐴𝑥 ∈ ( M ‘𝐴))))
1918ralbidv 3126 . . . 4 (𝑎 = 𝐴 → (∀𝑥 No (( bday 𝑥) ⊆ 𝑎𝑥 ∈ ( M ‘𝑎)) ↔ ∀𝑥 No (( bday 𝑥) ⊆ 𝐴𝑥 ∈ ( M ‘𝐴))))
20 bdayelon 33560 . . . . . . . . 9 ( bday 𝑥) ∈ On
21 onsseleq 6214 . . . . . . . . 9 ((( bday 𝑥) ∈ On ∧ 𝑎 ∈ On) → (( bday 𝑥) ⊆ 𝑎 ↔ (( bday 𝑥) ∈ 𝑎 ∨ ( bday 𝑥) = 𝑎)))
2220, 21mpan 689 . . . . . . . 8 (𝑎 ∈ On → (( bday 𝑥) ⊆ 𝑎 ↔ (( bday 𝑥) ∈ 𝑎 ∨ ( bday 𝑥) = 𝑎)))
2322ad2antrr 725 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) → (( bday 𝑥) ⊆ 𝑎 ↔ (( bday 𝑥) ∈ 𝑎 ∨ ( bday 𝑥) = 𝑎)))
24 simpll 766 . . . . . . . . . . 11 (((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) → 𝑎 ∈ On)
25 onelss 6215 . . . . . . . . . . . . 13 (𝑎 ∈ On → (( bday 𝑥) ∈ 𝑎 → ( bday 𝑥) ⊆ 𝑎))
2625ad2antrr 725 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) → (( bday 𝑥) ∈ 𝑎 → ( bday 𝑥) ⊆ 𝑎))
2726imp 410 . . . . . . . . . . 11 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) ∧ ( bday 𝑥) ∈ 𝑎) → ( bday 𝑥) ⊆ 𝑎)
28 madess 33642 . . . . . . . . . . 11 ((( bday 𝑥) ∈ On ∧ 𝑎 ∈ On ∧ ( bday 𝑥) ⊆ 𝑎) → ( M ‘( bday 𝑥)) ⊆ ( M ‘𝑎))
2920, 24, 27, 28mp3an2ani 1465 . . . . . . . . . 10 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) ∧ ( bday 𝑥) ∈ 𝑎) → ( M ‘( bday 𝑥)) ⊆ ( M ‘𝑎))
30 ssid 3916 . . . . . . . . . . 11 ( bday 𝑥) ⊆ ( bday 𝑥)
31 simpr 488 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) ∧ ( bday 𝑥) ∈ 𝑎) → ( bday 𝑥) ∈ 𝑎)
32 simplr 768 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) ∧ ( bday 𝑥) ∈ 𝑎) → 𝑥 No )
3331, 32jca 515 . . . . . . . . . . . 12 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) ∧ ( bday 𝑥) ∈ 𝑎) → (( bday 𝑥) ∈ 𝑎𝑥 No ))
34 simpllr 775 . . . . . . . . . . . 12 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) ∧ ( bday 𝑥) ∈ 𝑎) → ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
35 sseq2 3920 . . . . . . . . . . . . . 14 (𝑏 = ( bday 𝑥) → (( bday 𝑦) ⊆ 𝑏 ↔ ( bday 𝑦) ⊆ ( bday 𝑥)))
36 fveq2 6662 . . . . . . . . . . . . . . 15 (𝑏 = ( bday 𝑥) → ( M ‘𝑏) = ( M ‘( bday 𝑥)))
3736eleq2d 2837 . . . . . . . . . . . . . 14 (𝑏 = ( bday 𝑥) → (𝑦 ∈ ( M ‘𝑏) ↔ 𝑦 ∈ ( M ‘( bday 𝑥))))
3835, 37imbi12d 348 . . . . . . . . . . . . 13 (𝑏 = ( bday 𝑥) → ((( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ↔ (( bday 𝑦) ⊆ ( bday 𝑥) → 𝑦 ∈ ( M ‘( bday 𝑥)))))
39 fveq2 6662 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ( bday 𝑦) = ( bday 𝑥))
4039sseq1d 3925 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (( bday 𝑦) ⊆ ( bday 𝑥) ↔ ( bday 𝑥) ⊆ ( bday 𝑥)))
41 eleq1 2839 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦 ∈ ( M ‘( bday 𝑥)) ↔ 𝑥 ∈ ( M ‘( bday 𝑥))))
4240, 41imbi12d 348 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((( bday 𝑦) ⊆ ( bday 𝑥) → 𝑦 ∈ ( M ‘( bday 𝑥))) ↔ (( bday 𝑥) ⊆ ( bday 𝑥) → 𝑥 ∈ ( M ‘( bday 𝑥)))))
4338, 42rspc2v 3553 . . . . . . . . . . . 12 ((( bday 𝑥) ∈ 𝑎𝑥 No ) → (∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) → (( bday 𝑥) ⊆ ( bday 𝑥) → 𝑥 ∈ ( M ‘( bday 𝑥)))))
4433, 34, 43sylc 65 . . . . . . . . . . 11 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) ∧ ( bday 𝑥) ∈ 𝑎) → (( bday 𝑥) ⊆ ( bday 𝑥) → 𝑥 ∈ ( M ‘( bday 𝑥))))
4530, 44mpi 20 . . . . . . . . . 10 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) ∧ ( bday 𝑥) ∈ 𝑎) → 𝑥 ∈ ( M ‘( bday 𝑥)))
4629, 45sseldd 3895 . . . . . . . . 9 ((((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) ∧ ( bday 𝑥) ∈ 𝑎) → 𝑥 ∈ ( M ‘𝑎))
4746ex 416 . . . . . . . 8 (((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) → (( bday 𝑥) ∈ 𝑎𝑥 ∈ ( M ‘𝑎)))
48 madebdaylemlrcut 33662 . . . . . . . . . . . 12 ((∀𝑏 ∈ ( bday 𝑥)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑥 No ) → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
4920a1i 11 . . . . . . . . . . . . . 14 (𝑥 No → ( bday 𝑥) ∈ On)
50 lltropt 33638 . . . . . . . . . . . . . 14 (𝑥 No → ( L ‘𝑥) <<s ( R ‘𝑥))
51 leftssold 33644 . . . . . . . . . . . . . 14 (𝑥 No → ( L ‘𝑥) ⊆ ( O ‘( bday 𝑥)))
52 rightssold 33645 . . . . . . . . . . . . . 14 (𝑥 No → ( R ‘𝑥) ⊆ ( O ‘( bday 𝑥)))
53 madecut 33648 . . . . . . . . . . . . . 14 (((( bday 𝑥) ∈ On ∧ ( L ‘𝑥) <<s ( R ‘𝑥)) ∧ (( L ‘𝑥) ⊆ ( O ‘( bday 𝑥)) ∧ ( R ‘𝑥) ⊆ ( O ‘( bday 𝑥)))) → (( L ‘𝑥) |s ( R ‘𝑥)) ∈ ( M ‘( bday 𝑥)))
5449, 50, 51, 52, 53syl22anc 837 . . . . . . . . . . . . 13 (𝑥 No → (( L ‘𝑥) |s ( R ‘𝑥)) ∈ ( M ‘( bday 𝑥)))
5554adantl 485 . . . . . . . . . . . 12 ((∀𝑏 ∈ ( bday 𝑥)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑥 No ) → (( L ‘𝑥) |s ( R ‘𝑥)) ∈ ( M ‘( bday 𝑥)))
5648, 55eqeltrrd 2853 . . . . . . . . . . 11 ((∀𝑏 ∈ ( bday 𝑥)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑥 No ) → 𝑥 ∈ ( M ‘( bday 𝑥)))
57 raleq 3323 . . . . . . . . . . . . 13 (( bday 𝑥) = 𝑎 → (∀𝑏 ∈ ( bday 𝑥)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ↔ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))))
5857anbi1d 632 . . . . . . . . . . . 12 (( bday 𝑥) = 𝑎 → ((∀𝑏 ∈ ( bday 𝑥)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑥 No ) ↔ (∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑥 No )))
59 fveq2 6662 . . . . . . . . . . . . 13 (( bday 𝑥) = 𝑎 → ( M ‘( bday 𝑥)) = ( M ‘𝑎))
6059eleq2d 2837 . . . . . . . . . . . 12 (( bday 𝑥) = 𝑎 → (𝑥 ∈ ( M ‘( bday 𝑥)) ↔ 𝑥 ∈ ( M ‘𝑎)))
6158, 60imbi12d 348 . . . . . . . . . . 11 (( bday 𝑥) = 𝑎 → (((∀𝑏 ∈ ( bday 𝑥)∀𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑥 No ) → 𝑥 ∈ ( M ‘( bday 𝑥))) ↔ ((∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑥 No ) → 𝑥 ∈ ( M ‘𝑎))))
6256, 61mpbii 236 . . . . . . . . . 10 (( bday 𝑥) = 𝑎 → ((∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑥 No ) → 𝑥 ∈ ( M ‘𝑎)))
6362com12 32 . . . . . . . . 9 ((∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑥 No ) → (( bday 𝑥) = 𝑎𝑥 ∈ ( M ‘𝑎)))
6463adantll 713 . . . . . . . 8 (((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) → (( bday 𝑥) = 𝑎𝑥 ∈ ( M ‘𝑎)))
6547, 64jaod 856 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) → ((( bday 𝑥) ∈ 𝑎 ∨ ( bday 𝑥) = 𝑎) → 𝑥 ∈ ( M ‘𝑎)))
6623, 65sylbid 243 . . . . . 6 (((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) ∧ 𝑥 No ) → (( bday 𝑥) ⊆ 𝑎𝑥 ∈ ( M ‘𝑎)))
6766ralrimiva 3113 . . . . 5 ((𝑎 ∈ On ∧ ∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏))) → ∀𝑥 No (( bday 𝑥) ⊆ 𝑎𝑥 ∈ ( M ‘𝑎)))
6867ex 416 . . . 4 (𝑎 ∈ On → (∀𝑏𝑎𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) → ∀𝑥 No (( bday 𝑥) ⊆ 𝑎𝑥 ∈ ( M ‘𝑎))))
6914, 19, 68tfis3 7576 . . 3 (𝐴 ∈ On → ∀𝑥 No (( bday 𝑥) ⊆ 𝐴𝑥 ∈ ( M ‘𝐴)))
70 fveq2 6662 . . . . . 6 (𝑥 = 𝑋 → ( bday 𝑥) = ( bday 𝑋))
7170sseq1d 3925 . . . . 5 (𝑥 = 𝑋 → (( bday 𝑥) ⊆ 𝐴 ↔ ( bday 𝑋) ⊆ 𝐴))
72 eleq1 2839 . . . . 5 (𝑥 = 𝑋 → (𝑥 ∈ ( M ‘𝐴) ↔ 𝑋 ∈ ( M ‘𝐴)))
7371, 72imbi12d 348 . . . 4 (𝑥 = 𝑋 → ((( bday 𝑥) ⊆ 𝐴𝑥 ∈ ( M ‘𝐴)) ↔ (( bday 𝑋) ⊆ 𝐴𝑋 ∈ ( M ‘𝐴))))
7473rspccva 3542 . . 3 ((∀𝑥 No (( bday 𝑥) ⊆ 𝐴𝑥 ∈ ( M ‘𝐴)) ∧ 𝑋 No ) → (( bday 𝑋) ⊆ 𝐴𝑋 ∈ ( M ‘𝐴)))
7569, 74sylan 583 . 2 ((𝐴 ∈ On ∧ 𝑋 No ) → (( bday 𝑋) ⊆ 𝐴𝑋 ∈ ( M ‘𝐴)))
763, 75impbid 215 1 ((𝐴 ∈ On ∧ 𝑋 No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ( bday 𝑋) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wral 3070  wss 3860   class class class wbr 5035  Oncon0 6173  cfv 6339  (class class class)co 7155   No csur 33432   bday cbday 33434   <<s csslt 33564   |s cscut 33566   M cmade 33612   O cold 33613   L cleft 33615   R cright 33616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-wrecs 7962  df-recs 8023  df-1o 8117  df-2o 8118  df-no 33435  df-slt 33436  df-bday 33437  df-sslt 33565  df-scut 33567  df-made 33617  df-old 33618  df-left 33620  df-right 33621
This theorem is referenced by:  oldbday  33664  newbday  33665  lrcut  33666
  Copyright terms: Public domain W3C validator