MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgracol Structured version   Visualization version   GIF version

Theorem cgracol 26616
Description: Angle congruence preserves colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
cgracol.p 𝑃 = (Base‘𝐺)
cgracol.i 𝐼 = (Itv‘𝐺)
cgracol.m = (dist‘𝐺)
cgracol.g (𝜑𝐺 ∈ TarskiG)
cgracol.a (𝜑𝐴𝑃)
cgracol.b (𝜑𝐵𝑃)
cgracol.c (𝜑𝐶𝑃)
cgracol.d (𝜑𝐷𝑃)
cgracol.e (𝜑𝐸𝑃)
cgracol.f (𝜑𝐹𝑃)
cgracol.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgracol.l 𝐿 = (LineG‘𝐺)
cgracol.2 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
Assertion
Ref Expression
cgracol (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))

Proof of Theorem cgracol
StepHypRef Expression
1 cgracol.p . . . . . . . . . 10 𝑃 = (Base‘𝐺)
2 cgracol.i . . . . . . . . . 10 𝐼 = (Itv‘𝐺)
3 cgracol.m . . . . . . . . . 10 = (dist‘𝐺)
4 cgracol.g . . . . . . . . . . 11 (𝜑𝐺 ∈ TarskiG)
54adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐺 ∈ TarskiG)
6 cgracol.a . . . . . . . . . . 11 (𝜑𝐴𝑃)
76adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐴𝑃)
8 cgracol.b . . . . . . . . . . 11 (𝜑𝐵𝑃)
98adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐵𝑃)
10 cgracol.c . . . . . . . . . . 11 (𝜑𝐶𝑃)
1110adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐶𝑃)
12 cgracol.d . . . . . . . . . . 11 (𝜑𝐷𝑃)
1312adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐷𝑃)
14 cgracol.e . . . . . . . . . . 11 (𝜑𝐸𝑃)
1514adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐸𝑃)
16 cgracol.f . . . . . . . . . . 11 (𝜑𝐹𝑃)
1716adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐹𝑃)
18 cgracol.1 . . . . . . . . . . 11 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
1918adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
20 eqid 2823 . . . . . . . . . 10 (hlG‘𝐺) = (hlG‘𝐺)
211, 2, 20, 4, 6, 8, 10, 12, 14, 16, 18cgrane2 26601 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝐶)
2221necomd 3073 . . . . . . . . . . . . . . 15 (𝜑𝐶𝐵)
2322adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝐵)
241, 2, 20, 4, 6, 8, 10, 12, 14, 16, 18cgrane1 26600 . . . . . . . . . . . . . . 15 (𝜑𝐴𝐵)
2524adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐴𝐵)
264adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
276adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
2810adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝑃)
298adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
30 simpr 487 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
311, 3, 2, 26, 27, 28, 29, 30tgbtwncom 26276 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐵𝐼𝐴))
3231orcd 869 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))
3323, 25, 323jca 1124 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
3422adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝐵)
3524adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝐵)
364adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG)
3710adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝑃)
386adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝑃)
398adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵𝑃)
40 simpr 487 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵))
411, 3, 2, 36, 37, 38, 39, 40tgbtwncom 26276 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝐶))
4241olcd 870 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))
4334, 35, 423jca 1124 . . . . . . . . . . . . 13 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
4433, 43jaodan 954 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
451, 2, 20, 10, 6, 8, 4ishlg 26390 . . . . . . . . . . . . 13 (𝜑 → (𝐶((hlG‘𝐺)‘𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
4645adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐶((hlG‘𝐺)‘𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
4744, 46mpbird 259 . . . . . . . . . . 11 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐶((hlG‘𝐺)‘𝐵)𝐴)
481, 2, 20, 11, 7, 9, 5, 47hlcomd 26392 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐴((hlG‘𝐺)‘𝐵)𝐶)
491, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20, 48cgrahl 26615 . . . . . . . . 9 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐷((hlG‘𝐺)‘𝐸)𝐹)
501, 2, 20, 13, 17, 15, 5ishlg 26390 . . . . . . . . 9 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷((hlG‘𝐺)‘𝐸)𝐹 ↔ (𝐷𝐸𝐹𝐸 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷)))))
5149, 50mpbid 234 . . . . . . . 8 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷𝐸𝐹𝐸 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷))))
5251simp3d 1140 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷)))
534adantr 483 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐺 ∈ TarskiG)
5414adantr 483 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐸𝑃)
5512adantr 483 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷𝑃)
5616adantr 483 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐹𝑃)
57 simpr 487 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷 ∈ (𝐸𝐼𝐹))
581, 3, 2, 53, 54, 55, 56, 57tgbtwncom 26276 . . . . . . . . 9 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷 ∈ (𝐹𝐼𝐸))
5958olcd 870 . . . . . . . 8 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
604adantr 483 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐺 ∈ TarskiG)
6114adantr 483 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐸𝑃)
6216adantr 483 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹𝑃)
6312adantr 483 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐷𝑃)
64 simpr 487 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹 ∈ (𝐸𝐼𝐷))
651, 3, 2, 60, 61, 62, 63, 64tgbtwncom 26276 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹 ∈ (𝐷𝐼𝐸))
6665orcd 869 . . . . . . . 8 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6759, 66jaodan 954 . . . . . . 7 ((𝜑 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6852, 67syldan 593 . . . . . 6 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6968orcd 869 . . . . 5 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
70 df-3or 1084 . . . . 5 ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹)) ↔ ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
7169, 70sylibr 236 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
72 cgracol.l . . . . . 6 𝐿 = (LineG‘𝐺)
731, 2, 4, 20, 6, 8, 10, 12, 14, 16, 18cgracom 26610 . . . . . . 7 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
741, 2, 20, 4, 12, 14, 16, 6, 8, 10, 73cgrane1 26600 . . . . . 6 (𝜑𝐷𝐸)
751, 72, 2, 4, 12, 14, 74, 16tgellng 26341 . . . . 5 (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ↔ (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹))))
7675adantr 483 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐿𝐸) ↔ (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹))))
7771, 76mpbird 259 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐹 ∈ (𝐷𝐿𝐸))
7877orcd 869 . 2 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
794adantr 483 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
8012adantr 483 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐷𝑃)
8114adantr 483 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸𝑃)
8216adantr 483 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐹𝑃)
836adantr 483 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
848adantr 483 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
8510adantr 483 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
8618adantr 483 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
87 simpr 487 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
881, 2, 3, 79, 83, 84, 85, 80, 81, 82, 86, 87cgrabtwn 26614 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸 ∈ (𝐷𝐼𝐹))
891, 72, 2, 79, 80, 81, 82, 88btwncolg3 26345 . 2 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
9024neneqd 3023 . . . . 5 (𝜑 → ¬ 𝐴 = 𝐵)
91 cgracol.2 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
9291orcomd 867 . . . . . 6 (𝜑 → (𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
9392ord 860 . . . . 5 (𝜑 → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
9490, 93mpd 15 . . . 4 (𝜑𝐶 ∈ (𝐴𝐿𝐵))
951, 72, 2, 4, 6, 8, 24, 10tgellng 26341 . . . 4 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶))))
9694, 95mpbid 234 . . 3 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
97 df-3or 1084 . . 3 ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)) ↔ ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
9896, 97sylib 220 . 2 (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
9978, 89, 98mpjaodan 955 1 (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  ⟨“cs3 14206  Basecbs 16485  distcds 16576  TarskiGcstrkg 26218  Itvcitv 26224  LineGclng 26225  hlGchlg 26388  cgrAccgra 26595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-trkgc 26236  df-trkgb 26237  df-trkgcb 26238  df-trkg 26241  df-cgrg 26299  df-leg 26371  df-hlg 26389  df-cgra 26596
This theorem is referenced by:  cgrancol  26617  tgasa1  26646
  Copyright terms: Public domain W3C validator