MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgracol Structured version   Visualization version   GIF version

Theorem cgracol 28807
Description: Angle congruence preserves colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
cgracol.p 𝑃 = (Base‘𝐺)
cgracol.i 𝐼 = (Itv‘𝐺)
cgracol.m = (dist‘𝐺)
cgracol.g (𝜑𝐺 ∈ TarskiG)
cgracol.a (𝜑𝐴𝑃)
cgracol.b (𝜑𝐵𝑃)
cgracol.c (𝜑𝐶𝑃)
cgracol.d (𝜑𝐷𝑃)
cgracol.e (𝜑𝐸𝑃)
cgracol.f (𝜑𝐹𝑃)
cgracol.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgracol.l 𝐿 = (LineG‘𝐺)
cgracol.2 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
Assertion
Ref Expression
cgracol (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))

Proof of Theorem cgracol
StepHypRef Expression
1 cgracol.p . . . . . . . . . 10 𝑃 = (Base‘𝐺)
2 cgracol.i . . . . . . . . . 10 𝐼 = (Itv‘𝐺)
3 cgracol.m . . . . . . . . . 10 = (dist‘𝐺)
4 cgracol.g . . . . . . . . . . 11 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐺 ∈ TarskiG)
6 cgracol.a . . . . . . . . . . 11 (𝜑𝐴𝑃)
76adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐴𝑃)
8 cgracol.b . . . . . . . . . . 11 (𝜑𝐵𝑃)
98adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐵𝑃)
10 cgracol.c . . . . . . . . . . 11 (𝜑𝐶𝑃)
1110adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐶𝑃)
12 cgracol.d . . . . . . . . . . 11 (𝜑𝐷𝑃)
1312adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐷𝑃)
14 cgracol.e . . . . . . . . . . 11 (𝜑𝐸𝑃)
1514adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐸𝑃)
16 cgracol.f . . . . . . . . . . 11 (𝜑𝐹𝑃)
1716adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐹𝑃)
18 cgracol.1 . . . . . . . . . . 11 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
1918adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
20 eqid 2735 . . . . . . . . . 10 (hlG‘𝐺) = (hlG‘𝐺)
211, 2, 20, 4, 6, 8, 10, 12, 14, 16, 18cgrane2 28792 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝐶)
2221necomd 2987 . . . . . . . . . . . . . . 15 (𝜑𝐶𝐵)
2322adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝐵)
241, 2, 20, 4, 6, 8, 10, 12, 14, 16, 18cgrane1 28791 . . . . . . . . . . . . . . 15 (𝜑𝐴𝐵)
2524adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐴𝐵)
264adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
276adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
2810adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝑃)
298adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
30 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
311, 3, 2, 26, 27, 28, 29, 30tgbtwncom 28467 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐵𝐼𝐴))
3231orcd 873 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))
3323, 25, 323jca 1128 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
3422adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝐵)
3524adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝐵)
364adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG)
3710adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝑃)
386adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝑃)
398adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵𝑃)
40 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵))
411, 3, 2, 36, 37, 38, 39, 40tgbtwncom 28467 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝐶))
4241olcd 874 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))
4334, 35, 423jca 1128 . . . . . . . . . . . . 13 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
4433, 43jaodan 959 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
451, 2, 20, 10, 6, 8, 4ishlg 28581 . . . . . . . . . . . . 13 (𝜑 → (𝐶((hlG‘𝐺)‘𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
4645adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐶((hlG‘𝐺)‘𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
4744, 46mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐶((hlG‘𝐺)‘𝐵)𝐴)
481, 2, 20, 11, 7, 9, 5, 47hlcomd 28583 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐴((hlG‘𝐺)‘𝐵)𝐶)
491, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20, 48cgrahl 28806 . . . . . . . . 9 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐷((hlG‘𝐺)‘𝐸)𝐹)
501, 2, 20, 13, 17, 15, 5ishlg 28581 . . . . . . . . 9 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷((hlG‘𝐺)‘𝐸)𝐹 ↔ (𝐷𝐸𝐹𝐸 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷)))))
5149, 50mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷𝐸𝐹𝐸 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷))))
5251simp3d 1144 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷)))
534adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐺 ∈ TarskiG)
5414adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐸𝑃)
5512adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷𝑃)
5616adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐹𝑃)
57 simpr 484 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷 ∈ (𝐸𝐼𝐹))
581, 3, 2, 53, 54, 55, 56, 57tgbtwncom 28467 . . . . . . . . 9 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷 ∈ (𝐹𝐼𝐸))
5958olcd 874 . . . . . . . 8 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
604adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐺 ∈ TarskiG)
6114adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐸𝑃)
6216adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹𝑃)
6312adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐷𝑃)
64 simpr 484 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹 ∈ (𝐸𝐼𝐷))
651, 3, 2, 60, 61, 62, 63, 64tgbtwncom 28467 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹 ∈ (𝐷𝐼𝐸))
6665orcd 873 . . . . . . . 8 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6759, 66jaodan 959 . . . . . . 7 ((𝜑 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6852, 67syldan 591 . . . . . 6 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6968orcd 873 . . . . 5 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
70 df-3or 1087 . . . . 5 ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹)) ↔ ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
7169, 70sylibr 234 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
72 cgracol.l . . . . . 6 𝐿 = (LineG‘𝐺)
731, 2, 4, 20, 6, 8, 10, 12, 14, 16, 18cgracom 28801 . . . . . . 7 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
741, 2, 20, 4, 12, 14, 16, 6, 8, 10, 73cgrane1 28791 . . . . . 6 (𝜑𝐷𝐸)
751, 72, 2, 4, 12, 14, 74, 16tgellng 28532 . . . . 5 (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ↔ (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹))))
7675adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐿𝐸) ↔ (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹))))
7771, 76mpbird 257 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐹 ∈ (𝐷𝐿𝐸))
7877orcd 873 . 2 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
794adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
8012adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐷𝑃)
8114adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸𝑃)
8216adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐹𝑃)
836adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
848adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
8510adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
8618adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
87 simpr 484 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
881, 2, 3, 79, 83, 84, 85, 80, 81, 82, 86, 87cgrabtwn 28805 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸 ∈ (𝐷𝐼𝐹))
891, 72, 2, 79, 80, 81, 82, 88btwncolg3 28536 . 2 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
9024neneqd 2937 . . . . 5 (𝜑 → ¬ 𝐴 = 𝐵)
91 cgracol.2 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
9291orcomd 871 . . . . . 6 (𝜑 → (𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
9392ord 864 . . . . 5 (𝜑 → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
9490, 93mpd 15 . . . 4 (𝜑𝐶 ∈ (𝐴𝐿𝐵))
951, 72, 2, 4, 6, 8, 24, 10tgellng 28532 . . . 4 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶))))
9694, 95mpbid 232 . . 3 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
97 df-3or 1087 . . 3 ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)) ↔ ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
9896, 97sylib 218 . 2 (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
9978, 89, 98mpjaodan 960 1 (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  ⟨“cs3 14861  Basecbs 17228  distcds 17280  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413  hlGchlg 28579  cgrAccgra 28786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-cgrg 28490  df-leg 28562  df-hlg 28580  df-cgra 28787
This theorem is referenced by:  cgrancol  28808  tgasa1  28837
  Copyright terms: Public domain W3C validator