MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgracol Structured version   Visualization version   GIF version

Theorem cgracol 28773
Description: Angle congruence preserves colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
cgracol.p 𝑃 = (Base‘𝐺)
cgracol.i 𝐼 = (Itv‘𝐺)
cgracol.m = (dist‘𝐺)
cgracol.g (𝜑𝐺 ∈ TarskiG)
cgracol.a (𝜑𝐴𝑃)
cgracol.b (𝜑𝐵𝑃)
cgracol.c (𝜑𝐶𝑃)
cgracol.d (𝜑𝐷𝑃)
cgracol.e (𝜑𝐸𝑃)
cgracol.f (𝜑𝐹𝑃)
cgracol.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgracol.l 𝐿 = (LineG‘𝐺)
cgracol.2 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
Assertion
Ref Expression
cgracol (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))

Proof of Theorem cgracol
StepHypRef Expression
1 cgracol.p . . . . . . . . . 10 𝑃 = (Base‘𝐺)
2 cgracol.i . . . . . . . . . 10 𝐼 = (Itv‘𝐺)
3 cgracol.m . . . . . . . . . 10 = (dist‘𝐺)
4 cgracol.g . . . . . . . . . . 11 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐺 ∈ TarskiG)
6 cgracol.a . . . . . . . . . . 11 (𝜑𝐴𝑃)
76adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐴𝑃)
8 cgracol.b . . . . . . . . . . 11 (𝜑𝐵𝑃)
98adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐵𝑃)
10 cgracol.c . . . . . . . . . . 11 (𝜑𝐶𝑃)
1110adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐶𝑃)
12 cgracol.d . . . . . . . . . . 11 (𝜑𝐷𝑃)
1312adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐷𝑃)
14 cgracol.e . . . . . . . . . . 11 (𝜑𝐸𝑃)
1514adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐸𝑃)
16 cgracol.f . . . . . . . . . . 11 (𝜑𝐹𝑃)
1716adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐹𝑃)
18 cgracol.1 . . . . . . . . . . 11 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
1918adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
20 eqid 2729 . . . . . . . . . 10 (hlG‘𝐺) = (hlG‘𝐺)
211, 2, 20, 4, 6, 8, 10, 12, 14, 16, 18cgrane2 28758 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝐶)
2221necomd 2980 . . . . . . . . . . . . . . 15 (𝜑𝐶𝐵)
2322adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝐵)
241, 2, 20, 4, 6, 8, 10, 12, 14, 16, 18cgrane1 28757 . . . . . . . . . . . . . . 15 (𝜑𝐴𝐵)
2524adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐴𝐵)
264adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
276adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
2810adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝑃)
298adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
30 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
311, 3, 2, 26, 27, 28, 29, 30tgbtwncom 28433 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐵𝐼𝐴))
3231orcd 873 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))
3323, 25, 323jca 1128 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
3422adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝐵)
3524adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝐵)
364adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG)
3710adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝑃)
386adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝑃)
398adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵𝑃)
40 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵))
411, 3, 2, 36, 37, 38, 39, 40tgbtwncom 28433 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝐶))
4241olcd 874 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))
4334, 35, 423jca 1128 . . . . . . . . . . . . 13 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
4433, 43jaodan 959 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
451, 2, 20, 10, 6, 8, 4ishlg 28547 . . . . . . . . . . . . 13 (𝜑 → (𝐶((hlG‘𝐺)‘𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
4645adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐶((hlG‘𝐺)‘𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
4744, 46mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐶((hlG‘𝐺)‘𝐵)𝐴)
481, 2, 20, 11, 7, 9, 5, 47hlcomd 28549 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐴((hlG‘𝐺)‘𝐵)𝐶)
491, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20, 48cgrahl 28772 . . . . . . . . 9 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐷((hlG‘𝐺)‘𝐸)𝐹)
501, 2, 20, 13, 17, 15, 5ishlg 28547 . . . . . . . . 9 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷((hlG‘𝐺)‘𝐸)𝐹 ↔ (𝐷𝐸𝐹𝐸 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷)))))
5149, 50mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷𝐸𝐹𝐸 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷))))
5251simp3d 1144 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷)))
534adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐺 ∈ TarskiG)
5414adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐸𝑃)
5512adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷𝑃)
5616adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐹𝑃)
57 simpr 484 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷 ∈ (𝐸𝐼𝐹))
581, 3, 2, 53, 54, 55, 56, 57tgbtwncom 28433 . . . . . . . . 9 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷 ∈ (𝐹𝐼𝐸))
5958olcd 874 . . . . . . . 8 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
604adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐺 ∈ TarskiG)
6114adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐸𝑃)
6216adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹𝑃)
6312adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐷𝑃)
64 simpr 484 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹 ∈ (𝐸𝐼𝐷))
651, 3, 2, 60, 61, 62, 63, 64tgbtwncom 28433 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹 ∈ (𝐷𝐼𝐸))
6665orcd 873 . . . . . . . 8 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6759, 66jaodan 959 . . . . . . 7 ((𝜑 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6852, 67syldan 591 . . . . . 6 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6968orcd 873 . . . . 5 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
70 df-3or 1087 . . . . 5 ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹)) ↔ ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
7169, 70sylibr 234 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
72 cgracol.l . . . . . 6 𝐿 = (LineG‘𝐺)
731, 2, 4, 20, 6, 8, 10, 12, 14, 16, 18cgracom 28767 . . . . . . 7 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
741, 2, 20, 4, 12, 14, 16, 6, 8, 10, 73cgrane1 28757 . . . . . 6 (𝜑𝐷𝐸)
751, 72, 2, 4, 12, 14, 74, 16tgellng 28498 . . . . 5 (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ↔ (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹))))
7675adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐿𝐸) ↔ (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹))))
7771, 76mpbird 257 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐹 ∈ (𝐷𝐿𝐸))
7877orcd 873 . 2 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
794adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
8012adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐷𝑃)
8114adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸𝑃)
8216adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐹𝑃)
836adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
848adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
8510adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
8618adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
87 simpr 484 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
881, 2, 3, 79, 83, 84, 85, 80, 81, 82, 86, 87cgrabtwn 28771 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸 ∈ (𝐷𝐼𝐹))
891, 72, 2, 79, 80, 81, 82, 88btwncolg3 28502 . 2 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
9024neneqd 2930 . . . . 5 (𝜑 → ¬ 𝐴 = 𝐵)
91 cgracol.2 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
9291orcomd 871 . . . . . 6 (𝜑 → (𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
9392ord 864 . . . . 5 (𝜑 → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
9490, 93mpd 15 . . . 4 (𝜑𝐶 ∈ (𝐴𝐿𝐵))
951, 72, 2, 4, 6, 8, 24, 10tgellng 28498 . . . 4 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶))))
9694, 95mpbid 232 . . 3 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
97 df-3or 1087 . . 3 ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)) ↔ ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
9896, 97sylib 218 . 2 (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
9978, 89, 98mpjaodan 960 1 (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  ⟨“cs3 14749  Basecbs 17120  distcds 17170  TarskiGcstrkg 28372  Itvcitv 28378  LineGclng 28379  hlGchlg 28545  cgrAccgra 28752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-trkgc 28393  df-trkgb 28394  df-trkgcb 28395  df-trkg 28398  df-cgrg 28456  df-leg 28528  df-hlg 28546  df-cgra 28753
This theorem is referenced by:  cgrancol  28774  tgasa1  28803
  Copyright terms: Public domain W3C validator