MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgracol Structured version   Visualization version   GIF version

Theorem cgracol 28854
Description: Angle congruence preserves colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
cgracol.p 𝑃 = (Base‘𝐺)
cgracol.i 𝐼 = (Itv‘𝐺)
cgracol.m = (dist‘𝐺)
cgracol.g (𝜑𝐺 ∈ TarskiG)
cgracol.a (𝜑𝐴𝑃)
cgracol.b (𝜑𝐵𝑃)
cgracol.c (𝜑𝐶𝑃)
cgracol.d (𝜑𝐷𝑃)
cgracol.e (𝜑𝐸𝑃)
cgracol.f (𝜑𝐹𝑃)
cgracol.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
cgracol.l 𝐿 = (LineG‘𝐺)
cgracol.2 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
Assertion
Ref Expression
cgracol (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))

Proof of Theorem cgracol
StepHypRef Expression
1 cgracol.p . . . . . . . . . 10 𝑃 = (Base‘𝐺)
2 cgracol.i . . . . . . . . . 10 𝐼 = (Itv‘𝐺)
3 cgracol.m . . . . . . . . . 10 = (dist‘𝐺)
4 cgracol.g . . . . . . . . . . 11 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐺 ∈ TarskiG)
6 cgracol.a . . . . . . . . . . 11 (𝜑𝐴𝑃)
76adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐴𝑃)
8 cgracol.b . . . . . . . . . . 11 (𝜑𝐵𝑃)
98adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐵𝑃)
10 cgracol.c . . . . . . . . . . 11 (𝜑𝐶𝑃)
1110adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐶𝑃)
12 cgracol.d . . . . . . . . . . 11 (𝜑𝐷𝑃)
1312adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐷𝑃)
14 cgracol.e . . . . . . . . . . 11 (𝜑𝐸𝑃)
1514adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐸𝑃)
16 cgracol.f . . . . . . . . . . 11 (𝜑𝐹𝑃)
1716adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐹𝑃)
18 cgracol.1 . . . . . . . . . . 11 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
1918adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
20 eqid 2740 . . . . . . . . . 10 (hlG‘𝐺) = (hlG‘𝐺)
211, 2, 20, 4, 6, 8, 10, 12, 14, 16, 18cgrane2 28839 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝐶)
2221necomd 3002 . . . . . . . . . . . . . . 15 (𝜑𝐶𝐵)
2322adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝐵)
241, 2, 20, 4, 6, 8, 10, 12, 14, 16, 18cgrane1 28838 . . . . . . . . . . . . . . 15 (𝜑𝐴𝐵)
2524adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐴𝐵)
264adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
276adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
2810adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶𝑃)
298adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
30 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐴𝐼𝐵))
311, 3, 2, 26, 27, 28, 29, 30tgbtwncom 28514 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → 𝐶 ∈ (𝐵𝐼𝐴))
3231orcd 872 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))
3323, 25, 323jca 1128 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (𝐴𝐼𝐵)) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
3422adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝐵)
3524adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝐵)
364adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG)
3710adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝑃)
386adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝑃)
398adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵𝑃)
40 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵))
411, 3, 2, 36, 37, 38, 39, 40tgbtwncom 28514 . . . . . . . . . . . . . . 15 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝐶))
4241olcd 873 . . . . . . . . . . . . . 14 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))
4334, 35, 423jca 1128 . . . . . . . . . . . . 13 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
4433, 43jaodan 958 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
451, 2, 20, 10, 6, 8, 4ishlg 28628 . . . . . . . . . . . . 13 (𝜑 → (𝐶((hlG‘𝐺)‘𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
4645adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐶((hlG‘𝐺)‘𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
4744, 46mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐶((hlG‘𝐺)‘𝐵)𝐴)
481, 2, 20, 11, 7, 9, 5, 47hlcomd 28630 . . . . . . . . . 10 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐴((hlG‘𝐺)‘𝐵)𝐶)
491, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20, 48cgrahl 28853 . . . . . . . . 9 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐷((hlG‘𝐺)‘𝐸)𝐹)
501, 2, 20, 13, 17, 15, 5ishlg 28628 . . . . . . . . 9 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷((hlG‘𝐺)‘𝐸)𝐹 ↔ (𝐷𝐸𝐹𝐸 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷)))))
5149, 50mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷𝐸𝐹𝐸 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷))))
5251simp3d 1144 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷)))
534adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐺 ∈ TarskiG)
5414adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐸𝑃)
5512adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷𝑃)
5616adantr 480 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐹𝑃)
57 simpr 484 . . . . . . . . . 10 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷 ∈ (𝐸𝐼𝐹))
581, 3, 2, 53, 54, 55, 56, 57tgbtwncom 28514 . . . . . . . . 9 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → 𝐷 ∈ (𝐹𝐼𝐸))
5958olcd 873 . . . . . . . 8 ((𝜑𝐷 ∈ (𝐸𝐼𝐹)) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
604adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐺 ∈ TarskiG)
6114adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐸𝑃)
6216adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹𝑃)
6312adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐷𝑃)
64 simpr 484 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹 ∈ (𝐸𝐼𝐷))
651, 3, 2, 60, 61, 62, 63, 64tgbtwncom 28514 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → 𝐹 ∈ (𝐷𝐼𝐸))
6665orcd 872 . . . . . . . 8 ((𝜑𝐹 ∈ (𝐸𝐼𝐷)) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6759, 66jaodan 958 . . . . . . 7 ((𝜑 ∧ (𝐷 ∈ (𝐸𝐼𝐹) ∨ 𝐹 ∈ (𝐸𝐼𝐷))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6852, 67syldan 590 . . . . . 6 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)))
6968orcd 872 . . . . 5 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
70 df-3or 1088 . . . . 5 ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹)) ↔ ((𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸)) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
7169, 70sylibr 234 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹)))
72 cgracol.l . . . . . 6 𝐿 = (LineG‘𝐺)
731, 2, 4, 20, 6, 8, 10, 12, 14, 16, 18cgracom 28848 . . . . . . 7 (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
741, 2, 20, 4, 12, 14, 16, 6, 8, 10, 73cgrane1 28838 . . . . . 6 (𝜑𝐷𝐸)
751, 72, 2, 4, 12, 14, 74, 16tgellng 28579 . . . . 5 (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ↔ (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹))))
7675adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐿𝐸) ↔ (𝐹 ∈ (𝐷𝐼𝐸) ∨ 𝐷 ∈ (𝐹𝐼𝐸) ∨ 𝐸 ∈ (𝐷𝐼𝐹))))
7771, 76mpbird 257 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → 𝐹 ∈ (𝐷𝐿𝐸))
7877orcd 872 . 2 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵))) → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
794adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
8012adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐷𝑃)
8114adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸𝑃)
8216adantr 480 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐹𝑃)
836adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
848adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
8510adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
8618adantr 480 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
87 simpr 484 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
881, 2, 3, 79, 83, 84, 85, 80, 81, 82, 86, 87cgrabtwn 28852 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐸 ∈ (𝐷𝐼𝐹))
891, 72, 2, 79, 80, 81, 82, 88btwncolg3 28583 . 2 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
9024neneqd 2951 . . . . 5 (𝜑 → ¬ 𝐴 = 𝐵)
91 cgracol.2 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
9291orcomd 870 . . . . . 6 (𝜑 → (𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
9392ord 863 . . . . 5 (𝜑 → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
9490, 93mpd 15 . . . 4 (𝜑𝐶 ∈ (𝐴𝐿𝐵))
951, 72, 2, 4, 6, 8, 24, 10tgellng 28579 . . . 4 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶))))
9694, 95mpbid 232 . . 3 (𝜑 → (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
97 df-3or 1088 . . 3 ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)) ↔ ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
9896, 97sylib 218 . 2 (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))
9978, 89, 98mpjaodan 959 1 (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  ⟨“cs3 14891  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460  hlGchlg 28626  cgrAccgra 28833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479  df-cgrg 28537  df-leg 28609  df-hlg 28627  df-cgra 28834
This theorem is referenced by:  cgrancol  28855  tgasa1  28884
  Copyright terms: Public domain W3C validator