MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wksonproplem Structured version   Visualization version   GIF version

Theorem wksonproplem 26959
Description: Lemma for theorems for properties of walks between two vertices, e.g., trlsonprop 26962. (Contributed by AV, 16-Jan-2021.)
Hypotheses
Ref Expression
wksonproplem.v 𝑉 = (Vtx‘𝐺)
wksonproplem.b (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
wksonproplem.d 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑄𝑔)𝑝)}))
wksonproplem.w (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ 𝑓(𝑄𝐺)𝑝) → 𝑓(Walks‘𝐺)𝑝)
Assertion
Ref Expression
wksonproplem (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑔,𝑝   𝐵,𝑎,𝑏,𝑓,𝑔,𝑝   𝐺,𝑎,𝑏,𝑓,𝑔,𝑝   𝑂,𝑎,𝑏,𝑔   𝑄,𝑎,𝑏,𝑔   𝑉,𝑎,𝑏,𝑓,𝑔,𝑝
Allowed substitution hints:   𝑃(𝑓,𝑔,𝑝,𝑎,𝑏)   𝑄(𝑓,𝑝)   𝐹(𝑓,𝑔,𝑝,𝑎,𝑏)   𝑂(𝑓,𝑝)   𝑊(𝑓,𝑔,𝑝,𝑎,𝑏)

Proof of Theorem wksonproplem
StepHypRef Expression
1 wksonproplem.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21fvexi 6425 . . . . 5 𝑉 ∈ V
3 wksonproplem.d . . . . . 6 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑄𝑔)𝑝)}))
4 simp1 1167 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐺 ∈ V)
5 simp2 1168 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
65, 1syl6eleq 2888 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
7 simp3 1169 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
87, 1syl6eleq 2888 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐵 ∈ (Vtx‘𝐺))
9 wksv 26869 . . . . . . . 8 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
109a1i 11 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V)
11 wksonproplem.w . . . . . . 7 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ 𝑓(𝑄𝐺)𝑝) → 𝑓(Walks‘𝐺)𝑝)
124, 6, 8, 10, 11, 3mptmpt2opabovd 7485 . . . . . 6 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → (𝐴(𝑊𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑂𝐺)𝐵)𝑝𝑓(𝑄𝐺)𝑝)})
13 fveq2 6411 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
1413, 1syl6eqr 2851 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
15 fveq2 6411 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑂𝑔) = (𝑂𝐺))
1615oveqd 6895 . . . . . . . 8 (𝑔 = 𝐺 → (𝑎(𝑂𝑔)𝑏) = (𝑎(𝑂𝐺)𝑏))
1716breqd 4854 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑎(𝑂𝐺)𝑏)𝑝))
18 fveq2 6411 . . . . . . . 8 (𝑔 = 𝐺 → (𝑄𝑔) = (𝑄𝐺))
1918breqd 4854 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(𝑄𝑔)𝑝𝑓(𝑄𝐺)𝑝))
2017, 19anbi12d 625 . . . . . 6 (𝑔 = 𝐺 → ((𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑄𝑔)𝑝) ↔ (𝑓(𝑎(𝑂𝐺)𝑏)𝑝𝑓(𝑄𝐺)𝑝)))
213, 12, 14, 14, 20bropfvvvv 7494 . . . . 5 ((𝑉 ∈ V ∧ 𝑉 ∈ V) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
222, 2, 21mp2an 684 . . . 4 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
23 3anass 1117 . . . . . 6 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ↔ (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)))
2423anbi1i 618 . . . . 5 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
25 df-3an 1110 . . . . 5 ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
2624, 25bitr4i 270 . . . 4 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
2722, 26sylibr 226 . . 3 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
28 wksonproplem.b . . . . 5 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
2928biimpd 221 . . . 4 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
3029imdistani 565 . . 3 ((((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝐹(𝐴(𝑊𝐺)𝐵)𝑃) → (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
3127, 30mpancom 680 . 2 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
32 df-3an 1110 . 2 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)) ↔ (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
3331, 32sylibr 226 1 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  Vcvv 3385   class class class wbr 4843  {copab 4905  cmpt 4922  cfv 6101  (class class class)co 6878  cmpt2 6880  Vtxcvtx 26231  Walkscwlks 26846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-ifp 1087  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-fzo 12721  df-hash 13371  df-word 13535  df-wlks 26849
This theorem is referenced by:  trlsonprop  26962  pthsonprop  26998  spthonprop  26999
  Copyright terms: Public domain W3C validator