Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wksonproplem | Structured version Visualization version GIF version |
Description: Lemma for theorems for properties of walks between two vertices, e.g., trlsonprop 28055. (Contributed by AV, 16-Jan-2021.) |
Ref | Expression |
---|---|
wksonproplem.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wksonproplem.b | ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) |
wksonproplem.d | ⊢ 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(𝑂‘𝑔)𝑏)𝑝 ∧ 𝑓(𝑄‘𝑔)𝑝)})) |
wksonproplem.w | ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑓(𝑄‘𝐺)𝑝) → 𝑓(Walks‘𝐺)𝑝) |
Ref | Expression |
---|---|
wksonproplem | ⊢ (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wksonproplem.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | fvexi 6782 | . . . . 5 ⊢ 𝑉 ∈ V |
3 | wksonproplem.d | . . . . . 6 ⊢ 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(𝑂‘𝑔)𝑏)𝑝 ∧ 𝑓(𝑄‘𝑔)𝑝)})) | |
4 | simp1 1134 | . . . . . . 7 ⊢ ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐺 ∈ V) | |
5 | simp2 1135 | . . . . . . . 8 ⊢ ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
6 | 5, 1 | eleqtrdi 2850 | . . . . . . 7 ⊢ ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ (Vtx‘𝐺)) |
7 | simp3 1136 | . . . . . . . 8 ⊢ ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
8 | 7, 1 | eleqtrdi 2850 | . . . . . . 7 ⊢ ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ (Vtx‘𝐺)) |
9 | wksv 27967 | . . . . . . . 8 ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V | |
10 | 9 | a1i 11 | . . . . . . 7 ⊢ ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V) |
11 | wksonproplem.w | . . . . . . 7 ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑓(𝑄‘𝐺)𝑝) → 𝑓(Walks‘𝐺)𝑝) | |
12 | 4, 6, 8, 10, 11, 3 | mptmpoopabovd 7908 | . . . . . 6 ⊢ ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(𝑊‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(𝑂‘𝐺)𝐵)𝑝 ∧ 𝑓(𝑄‘𝐺)𝑝)}) |
13 | fveq2 6768 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) | |
14 | 13, 1 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
15 | fveq2 6768 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (𝑂‘𝑔) = (𝑂‘𝐺)) | |
16 | 15 | oveqd 7285 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑎(𝑂‘𝑔)𝑏) = (𝑎(𝑂‘𝐺)𝑏)) |
17 | 16 | breqd 5089 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑓(𝑎(𝑂‘𝑔)𝑏)𝑝 ↔ 𝑓(𝑎(𝑂‘𝐺)𝑏)𝑝)) |
18 | fveq2 6768 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑄‘𝑔) = (𝑄‘𝐺)) | |
19 | 18 | breqd 5089 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑓(𝑄‘𝑔)𝑝 ↔ 𝑓(𝑄‘𝐺)𝑝)) |
20 | 17, 19 | anbi12d 630 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑓(𝑎(𝑂‘𝑔)𝑏)𝑝 ∧ 𝑓(𝑄‘𝑔)𝑝) ↔ (𝑓(𝑎(𝑂‘𝐺)𝑏)𝑝 ∧ 𝑓(𝑄‘𝐺)𝑝))) |
21 | 3, 12, 14, 14, 20 | bropfvvvv 7916 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ 𝑉 ∈ V) → (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 → (𝐺 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) |
22 | 2, 2, 21 | mp2an 688 | . . . 4 ⊢ (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 → (𝐺 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
23 | 3anass 1093 | . . . . . 6 ⊢ ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ↔ (𝐺 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉))) | |
24 | 23 | anbi1i 623 | . . . . 5 ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ ((𝐺 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
25 | df-3an 1087 | . . . . 5 ⊢ ((𝐺 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ ((𝐺 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | |
26 | 24, 25 | bitr4i 277 | . . . 4 ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ (𝐺 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
27 | 22, 26 | sylibr 233 | . . 3 ⊢ (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
28 | wksonproplem.b | . . . . 5 ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) | |
29 | 28 | biimpd 228 | . . . 4 ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 → (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) |
30 | 29 | imdistani 568 | . . 3 ⊢ ((((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃) → (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) |
31 | 27, 30 | mpancom 684 | . 2 ⊢ (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 → (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) |
32 | df-3an 1087 | . 2 ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃)) ↔ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) | |
33 | 31, 32 | sylibr 233 | 1 ⊢ (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 Vcvv 3430 class class class wbr 5078 {copab 5140 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 Vtxcvtx 27347 Walkscwlks 27944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-fzo 13365 df-hash 14026 df-word 14199 df-wlks 27947 |
This theorem is referenced by: trlsonprop 28055 pthsonprop 28091 spthonprop 28092 |
Copyright terms: Public domain | W3C validator |