MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wksonproplem Structured version   Visualization version   GIF version

Theorem wksonproplem 29632
Description: Lemma for theorems for properties of walks between two vertices, e.g., trlsonprop 29636. (Contributed by AV, 16-Jan-2021.) Remove is-walk hypothesis. (Revised by SN, 13-Dec-2024.)
Hypotheses
Ref Expression
wksonproplem.v 𝑉 = (Vtx‘𝐺)
wksonproplem.b (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
wksonproplem.d 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑄𝑔)𝑝)}))
Assertion
Ref Expression
wksonproplem (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑔,𝑝   𝐵,𝑎,𝑏,𝑓,𝑔,𝑝   𝐺,𝑎,𝑏,𝑓,𝑔,𝑝   𝑂,𝑎,𝑏,𝑔   𝑄,𝑎,𝑏,𝑓,𝑔,𝑝   𝑉,𝑎,𝑏,𝑓,𝑔,𝑝
Allowed substitution hints:   𝑃(𝑓,𝑔,𝑝,𝑎,𝑏)   𝐹(𝑓,𝑔,𝑝,𝑎,𝑏)   𝑂(𝑓,𝑝)   𝑊(𝑓,𝑔,𝑝,𝑎,𝑏)

Proof of Theorem wksonproplem
StepHypRef Expression
1 wksonproplem.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21fvexi 6872 . . . . 5 𝑉 ∈ V
3 wksonproplem.d . . . . . 6 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑄𝑔)𝑝)}))
4 simp1 1136 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐺 ∈ V)
5 simp2 1137 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
65, 1eleqtrdi 2838 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐴 ∈ (Vtx‘𝐺))
7 simp3 1138 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
87, 1eleqtrdi 2838 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → 𝐵 ∈ (Vtx‘𝐺))
94, 6, 8, 3mptmpoopabovd 8061 . . . . . 6 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) → (𝐴(𝑊𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(𝑂𝐺)𝐵)𝑝𝑓(𝑄𝐺)𝑝)})
10 fveq2 6858 . . . . . . 7 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
1110, 1eqtr4di 2782 . . . . . 6 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
12 fveq2 6858 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑂𝑔) = (𝑂𝐺))
1312oveqd 7404 . . . . . . . 8 (𝑔 = 𝐺 → (𝑎(𝑂𝑔)𝑏) = (𝑎(𝑂𝐺)𝑏))
1413breqd 5118 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑎(𝑂𝐺)𝑏)𝑝))
15 fveq2 6858 . . . . . . . 8 (𝑔 = 𝐺 → (𝑄𝑔) = (𝑄𝐺))
1615breqd 5118 . . . . . . 7 (𝑔 = 𝐺 → (𝑓(𝑄𝑔)𝑝𝑓(𝑄𝐺)𝑝))
1714, 16anbi12d 632 . . . . . 6 (𝑔 = 𝐺 → ((𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑄𝑔)𝑝) ↔ (𝑓(𝑎(𝑂𝐺)𝑏)𝑝𝑓(𝑄𝐺)𝑝)))
183, 9, 11, 11, 17bropfvvvv 8071 . . . . 5 ((𝑉 ∈ V ∧ 𝑉 ∈ V) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
192, 2, 18mp2an 692 . . . 4 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
20 3anass 1094 . . . . . 6 ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ↔ (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)))
2120anbi1i 624 . . . . 5 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
22 df-3an 1088 . . . . 5 ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ ((𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
2321, 22bitr4i 278 . . . 4 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ↔ (𝐺 ∈ V ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
2419, 23sylibr 234 . . 3 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
25 wksonproplem.b . . . . 5 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
2625biimpd 229 . . . 4 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
2726imdistani 568 . . 3 ((((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ 𝐹(𝐴(𝑊𝐺)𝐵)𝑃) → (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
2824, 27mpancom 688 . 2 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
29 df-3an 1088 . 2 (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)) ↔ (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
3028, 29sylibr 234 1 (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447   class class class wbr 5107  {copab 5169  cmpt 5188  cfv 6511  (class class class)co 7387  cmpo 7389  Vtxcvtx 28923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969
This theorem is referenced by:  trlsonprop  29636  pthsonprop  29674  spthonprop  29675
  Copyright terms: Public domain W3C validator